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Converse Propositions for the Mean and Average Value Theorems of Calculus 
Ali Astaneh Ph.D. (Lon), Vancouver, BC 

 

Sometime around 2018, as a Calculus teacher I was looking up Cauchy’s integral formula in a 

complex analysis textbook, curiously I tried to make up a “real” version of the theorem suitable 

for students of Calculus. It turned out that the real version of the formula can be interpreted as a 

converse to the Mean Value Theorem for integrals in Calculus. And since I had been teaching 

Calculus at different levels for decades by then, I was also surprised this educational fact hadn’t 

been mentioned in any of the many Calculus textbooks I had dealt with. So, within a reasonable 

time was able to use the available tools of Calculus to prove the converse, as seen in the 

Proposition below. Moreover, once the proof of the converse was settled, it also turned out that 

one can use the Proposition to conclude the converse for the Mean Value Theorem for 

differentiable functions, as seen in corollary following the Proposition. I should also point out 

that a certain condition (that is 0)(' cf ) must hold for the proof of the Proposition, therefore 

the Remark following the Proposition brings a counter example, showing that the said condition 

must necessarily be me for the assertion of the Proposition to be valid. I should also mention that 

I have posted my finding in this short article for BC math teachers on the bcamt‘s group email 

perhaps around late 2018. Finally, Lemm 1following the Corollar shows the assertion of the 

Corollary will not hold (at least locally) if the point (𝑐, f(𝑐)) is an inflection point for )(xf . 

 

Proposition (The converse of the Mean Value Theorem for integrals) 

Let )(xfy = be a continuously differentiable function over an open interval 𝐼. Then for any 

number 𝑐 in 𝐼 for which 0)(' cf  the value )(cf  of the function can be expressed as an average 

value for )(xf  in terms of a definite integral in the form −
=

b

a
dttf

ab
cf )(  

1
)( , with Iba , . 

Proof As I will explain shortly, we can assume without loss of generality 0=c  and 0)( =cf  at 

the same time.  In this more convenient case, the assumption 0)0(' f implies either 0)0(' f  

or else 0)0(' f . Because of similarity of the argument for the two cases I will assume

0)0(' f . Then, since the derivative )(' xf of f  is assumed to be continuous at 0=c , there 

will exist an open subinterval ),( 1ba of I containing 0=c  such that 0)(' xf  throughout the 

interval ),( 1ba , which in turn implies )(xf  is increasing over ),( 1ba . Therefore, for the specific 

anti-derivative of )(xf  defined by =
x

dttfxF
0

)()( , ],[ 1bax  we will have  

0)()()(
0

0
−==  a

a

dttfdttfaF  , and 0)()(
1

0
1 = 

b

dttfbF . 

Now if the two positive numbers )(aF  and )( 1bF are equal we are done, because 
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Otherwise, one of the two positive numbers )(aF  and )( 1bF  is greater than the other one, say 

)()(0 1bFaF  . Then, since the anti-derivative function )(xF  is continuous over the interval 

],0[ 1b  and we also have the inequality )()(0)0( 1bFaFF = , by the intermediate value 
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theorem for continuous functions applied to )(xF  over the interval ],0[ 1b there will exist a 

positive number 
10 bb   such that   −==

0

)()()(
a

dttfaFbF . Therefore, we will have 
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and the proof for the convenient case of 0=c  and 0)( =cf  is complete.  

 

If  to begin with 0c  and/or 0)( cf , we will first apply the above argument to the function 

)()()( cfcxfxg −+=  whose domain is the interval the interval 𝐽 = 𝐼 −  𝑐 with  , 0 ∈ 𝐽,  and   

0)0( =g . Therefore, by the previous case we have proved there will be numbers 𝑢 < 0 < 𝑣,  

𝑢, 𝑣 ∈ 𝐽,  such that the integral relation 𝑔(0) =
1

𝑣 − 𝑢
∫ 𝑔(𝑡)𝑑𝑡

𝑣

𝑢
 holds. Next, considering the 

relation )()()( cfcxfxg −+=  between f and g , the latter integral relation in terms of f  

translates as  

  

0 = 𝑔(0) =  
1

𝑣 −  𝑢 
∫ [ 𝑓(𝑡 + 𝑐)  −  𝑓(𝑐) ]𝑑𝑡

𝑣

𝑢

 

 

If we now separate the integral on the right into two parts and bring the second part to the left we 

get  

𝑓(𝑐) =
𝑓(𝑐)

𝑣 −  𝑢 
∫  𝑑𝑡

𝑣

𝑢

=  
1

𝑣 −  𝑢 
∫ 𝑓(𝑡 + 𝑐) 𝑑𝑡

𝑣

𝑢

 

 

If we make a substitution 𝑥 = 𝑡 + 𝑐  in the integral on the right we get 

 

𝑓(𝑐) =
1

𝑣 −  𝑢 
∫ 𝑓(𝑥)𝑑𝑥

𝑣+𝑐

𝑢+𝑐

 

 

Next, since the  𝑢, 𝑣 ∈ 𝐽   and   𝑢 < 0 < 𝑣  imply  𝑢 + 𝑐, 𝑣 + 𝑐 ∈ 𝐼, and   𝑢 + 𝑐 < 𝑐 < 𝑣 + 𝑐 

respectively, setting a = 𝑢 + 𝑐 and 𝑏 = 𝑣 + 𝑐 tunes the above last integral into 

 

𝑓(𝑐) =
1

(𝑏 −  𝑐)  −  (𝑎 −  𝑐 ) 
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

=
1

(𝑏 −  𝑎 )
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

 

and the proof of the general case is also complete. 

 

Remarks:( a) The condition 0)(' cf  in the Proposition is essential. For example, the assertion 

of the Proposition isn’t valid for 1)( 2 += xxf  and 0=c . 

 

(b) The assumption of continuous differentiability of )(xf in the above Proposition may be 

somewhat weakened. One can conclude the same “converse” assertion by merely assuming that 
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)(xf is a strictly monotonic continuous function over the interval I , in which case only the first 

few first lines of the above proof need to be shortened a little, but the remaining majority part of 

the proof will stay unchanged. 

(c) The integral relation −
=

b

a
dttf

ab
cf )(  

1
)(  of the Proposition can be expressed in a form 

consistent with the polar form of the Cauchy’s Integral Formula in complex analysis as,  

                                   +=
−

=





2

0
)(  

2

1
)(  

1
)( dafdttf

ab
cf

b

a
 

with  2/)( ab −= . To show the extent of consistency of the above, I recall that the polar 

version of Cauchy’s Integral Formula is as follows,  

);(0  ,)(  
2

1
)(

2

0
Dcdrdrecfcf i += 


 


. 

Corollary: (The converse of the mean value theorem) 

Let )(xgy = be a twice differentiable function over an open interval I containing a number c , 

and let 0)('' cg . Then there is a secant segments with end-points ))(,( agaA , ))(,( bgbB  parallel 

to the tangent line 𝑇𝑐 at the point ))(,( cgcP supported by the graph of )(xgy = ,  with Iba , , 

ba   which is to the curve )(xgy = .  More precisely, there will exist numbers Iba , with 

ba  such that 

 
)()(

)('
ab

agbg
cg

−

−
= .              

Proof:  Simply choose )(')( xgxf =  and apply the above Proposition. Thus, by the Fundamental 

Theorem of Calculus, there will exist Iba , , ba   such that  

ab

agbg
dttg

ab
dttf

ab
cfcg

b

a

b

a −

−
=

−
=

−
== 

)()(
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1
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1
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We end this short article with the following two Lemma relevant to the above corollary. 

 

Lemma 1 Let 𝑓(𝑥) be a twice differentiable function over the real line, and let 𝑃(𝑐, f(𝑐)) be an 

inflection at which 𝑓(𝑥) changes concavity. That is, 𝑓’′(c) = 0 and also 𝑓(𝑥) changes concavity at 

𝑃. Then there is an open interval 𝐼 = (𝑎, 𝑏) containing 𝑐 such that for any 𝑢, 𝑣 ∈ 𝐼 satisfying 𝑢 <
𝑐 < 𝑣  the inequality  

                                                                    𝑓 ′(𝑐) ≠
𝑓(𝑣)−𝑓(𝑢)

𝑣 − 𝑢
  

holds. Otherwise said, if 𝑢, 𝑣 ∈ 𝐼 and 𝑢 < 𝑐 < 𝑣 , no secant segment UV, with end points  

𝑈(𝑢, 𝑓(𝑢) and 𝑉(𝑣, 𝑓(𝑣) will be parallel to the tangent line 𝑇𝑐 at the inflection point 𝑃(𝑐, f(𝑐))  

to the graph of 𝑓(𝑥). 

 

Proof: Since the assertion of the Lemma is invariant under any horizontal or vertical 

transformation of 𝑓(𝑥), we can assume without loss of generality that the inflection point is at the 

origin, that is 𝑃(𝑐, f(𝑐)) is the origin O (0,0), in which case we will have  𝑓(𝑐) = 𝑐 = 0. 

Since 𝑓(𝑥) changes concavity at the origin, there is a positive 𝛿 such that 𝑓(𝑥) changes concavity 

only once at 𝑐 = 0 inside the interval I = (- 𝛿 𝛿). To complete the proof we will assume 

otherwise and reach a contradiction. So, assume there are two real numbers 𝑢 𝑎𝑛𝑑 𝑣 satisfying 

− δ < 𝑢 < 0 < 𝑣 < δ such that  
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                                                               𝑓 ′(0) =
𝑓(𝑣)−𝑓(𝑢)

𝑣 − 𝑢
 .            (*) 

Now because of similarity of the arguments we will assume that 𝑓(𝑥) is concave down under the 

interval [−𝛿, 0) and concave up over the interval (0,𝛿]. Since the graph of 𝑓(𝑥) is below the 

tangent line 𝑇0: 𝑦 = 𝑓 ′(0) x below the interval, [−𝛿, 0) and  𝑢 ∈ [−δ, 0) , it follows that 

 𝑓( 𝑢)< 𝑓’ (0) 𝑢,  which could also be expressed as - 𝑓’ (0) 𝑢 < - 𝑓 ( 𝑢). On the other hand, since 

the graph of 𝑓(𝑥) is above the tangent line 𝑇0: 𝑦 =  𝑓 ′(0) x and 𝑣 ∈ (0, δ],   over the interval  

(0, 𝑣], we should also have 𝑓’ (0) 𝑣 < 𝑓(𝑣).   

Now, adding the corresponding sides of the latter it two inequalities we get 

𝑓’ (0) 𝑣 - 𝑓’ (0) 𝑢 < 𝑓(𝑣) - 𝑓 ( 𝑢).  This inequality in turn implies  

𝑓 ′(0 =
𝑓(𝑣)−𝑓(𝑢)

𝑣 − 𝑢
, 

contradicting the assumption (*), and the proof of the Lemma is completed. 

 

We end the article with the following obvious Lemma 

 

Lemma 2 Let 𝑓(𝑥) be a twice differentiable function over the real line, and let 𝑃(𝑐, f(𝑐)) be an 

inflection point at which 𝑓(𝑥) changes concavity, so that hat is 𝑓’′(c) = 0. Then the necessary and 

sufficient condition for any two real numbers 𝑢 and 𝑣 with 𝑢 < 𝑐 < 𝑣  to  satisfy the relation 

                                                      𝑓 ′(𝑐) =
𝑓(𝑣)−𝑓(𝑢)

𝑣 − 𝑢
  

is that either for some  𝑢 < 𝑐 the equation 𝑓(𝑥) = 𝑓 ‘ ( c)  (𝑥 -  𝑢) + 𝑓 (𝑢)  has a solution 𝑥 = 𝑣 

with 𝑐 < 𝑣 ; or for some  𝑐 < 𝑣  the equation 𝑓(𝑥) = 𝑓 ’ (c) ( 𝑥  -  𝑣 ) + 𝑓 (𝑣)  has a solution  

𝑥 = 𝑢 with 𝑢 < 𝑐.   
  

Proof  Since both the lines with the equations y = 𝑓 ‘ ( c)  (𝑥 -  𝑢) + 𝑓 (𝑢) and  

y = 𝑓 ’ (c) ( 𝑥  -  𝑣 ) + 𝑓 (𝑣)  are parallel to the tangent line 𝑇𝑐, at 𝑃(𝑐, f(𝑐)) and in both cases 

𝑢 < 𝑐 < 𝑣, the proof is straightforward. 

 

 

 


