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In the previous Article 1 an analytical proof was presented to formulate the exact 

value of the cardinality μ involved in Gauss’s popular Lemma, according to parity of 

1 <𝑛 ≤ (𝑝 − 1) for an odd prime 𝑝 as in,  

Theorem: (Astaneh) Let 𝑝 be an odd prime number, 1 <𝑛 ≤ (𝑝 − 1),  

𝑃 = {1, 2, … ,
𝑝−1

2
}, 𝑁 = −𝑃, and   𝜇 = |𝑛𝑃 ∩ 𝑁|.  

(A) If 𝑛 is odd, then                 𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋)

𝑛−1

2
𝑖=1 .           (1) 

 

(B) If 𝑛 is even, then               𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋)

𝑛

2
𝑖=1 ,            (2) 

Here, for any real number 𝑥, the notation ⌊𝑥⌋ means the greatest integer ⌊𝑥⌋  ≤ 𝑥. 
 

In this article, first an analytical geometric interpretation of the exact value for 𝜇 is 

implied from the above part Theorem; as all possible interior lattice points (that is, 

points with integer coordinates) of the trapezoid OABC shown below, when 𝑛 is an 

odd number. When 𝑛 is even almost exactly the same interpretation is valid, except 

that, beside the interior of the trapezoid, there may be also another single lattice point 

on the interior of the boundary segment AB of the trapezoid as well.                                                                                                                                                                    
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Because of the extreme similarity of the argument for the two cases, we only deal 

with t part (A) of the Theorem where 𝑛 odd number, but only bring an Example for 

part (B) when we may also have a lattice point on the AB boundary of the trapezoid. 

 

Once the geometric interpretation is settled, a different independent (from above 

Theorem) number theoretical argument can be present to prove the validity of the said 

interpretation as, as a Proposition. Therefore, in a sense, proof of the Proposition on 

page 3 also can be considered as a second proof for above Theorem formulating the 

exact vale for 𝜇.  

 

Geometrical Interpretation of the Cardinality “𝝁" 

We first start with Part (A) of the Theorem where 𝑛 is odd, and rewrite formula (1) 

for odd prime 𝑝 and odd 1 ≤𝑛 ≤ 𝑝 − 1 as follows, 
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       𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋) =

𝑛−1

2
𝑖=1

∑ ⌊
𝑖𝑝

𝑛
⌋ −

𝑛−1

2
𝑖=1

∑ ⌊
(2𝑖−1)𝑝

2𝑛
⌋ =

𝑛−1

2
𝑖=1

∑ ⌊
𝑖𝑝

𝑛
⌋ −

𝑛−1

2
𝑖=1

∑ ⌊
(2𝑖−1)𝑝

2𝑛
⌋ =

𝑛−1

2
𝑖=1        

                                                                                                ∑ ⌊
𝑖𝑝

𝑛
⌋ −

𝑛−1

2
𝑖=1

∑ ⌊
𝑖𝑝

𝑛
−

𝑝

2𝑛
⌋

𝑛−1

2
𝑖=1 .    

Now, as it can be observed from the figure on the previous page, each term ⌊
𝑖𝑝

𝑛
⌋,  𝑖 =

1, 2, … ,
𝑛−1

2
 in the first sum ∑ ⌊

𝑖𝑝

𝑛
⌋

𝑛−1

2
𝑖=1  is simply the number of all lattice points below 

the line shown as 𝑦 =
𝑝

𝑛
𝑥, and standing directly above each of the abscissa 𝑥 = 𝑖. 

Therefore the sum ∑ ⌊
𝑖𝑝

𝑛
⌋

𝑛−1

2
𝑖=1  is the number of all lattice points below the line 𝑦 =

𝑝

𝑛
𝑥 

and above the 𝑥-axis over the domain [1,
𝑛−1

2
].   And, in the same way the second sum 

∑ ⌊
𝑖𝑝

𝑛
−

𝑝

2𝑛
⌋

𝑛−1

2

𝑖=1
 is the number all possible lattice points below the line  𝑦 =

𝑝

𝑛
𝑥 −

𝑝

2𝑛
 

over the domain [1,
𝑛−1

2
]. Therefore the difference between the two sums, which is 

𝜇 = ∑ ⌊
𝑖𝑝

𝑛
⌋ −

𝑛−1

2

𝑖=1
∑ ⌊

𝑖𝑝

𝑛
−

𝑝

2𝑛
⌋

𝑛−1

2

𝑖=1  is exactly the number of set all possible lattice points in 

the interior of the trapezoid OABC. Note that, as an easy exercise one can show that 

neither of the two lines 𝑦 =
𝑝

𝑛
𝑥 and 𝑦 =

𝑝

𝑛
𝑥 −

𝑝

2𝑛
 have any lattice points on them. It 

can also happen that some integer abscissa over the domain [1,
𝑛−1

2
] may not carry 

any interior point of the trapezoid on top of them, as can be verified for the case of 

𝑝 = 17, 𝑛 = 15 and the abscissa. 𝑥 = 5. Moreover (by part (b) of the Proposition on 

last page of Article 16) the total number of those lattice points satisfies 1 ≤𝜇 ≤

(
𝑛−1

2
 )(⌊

𝑝

2𝑛
⌋ + 1).  

As for part (B) of the Theorem, the argument would be very much the same, with 

only two minor differences. First, some lattice points in the interior of the AB 

segment of the boundary of the trapezoid OABC may also contribute in the exact 

count for cardinality 𝜇, simply because this time 
𝑛

2
 is an integer. So, in a general case 

(B) the cardinality 𝜇 would be in a one to one correspondence with all lattice points in 

the trapezoid over the domain [1,
𝑛

2
] instead. The only other difference (again by(b) of 

the Proposition on last page of Article 16), the upper bound for the cardinality 

changes to 1 ≤𝜇 ≤ (
𝑛

2
 )(⌊

𝑝

2𝑛
⌋ + 1).  

Having completed the interpretation of the exact count 𝜇 for the two parts of the 

Theorem, we now provide an independent proof (from the Theorem), for the 

geometric interpretation delivered above, using simpler number theory argument. Let 

us then formally present this as a Proposition.  

 

Proposition: Let 𝑝 be an odd prime number, 1 ≤𝑛 ≤ (𝑝 − 1) and odd number, 

𝑃 = {1, 2, … ,
𝑝−1

2
}, 𝑁 = −𝑃, and 𝜇 = |𝑛𝑃 ∩ 𝑁|. Then the cardinality 𝜇 is exactly the 

same as the number lattice points in the interior of the trapezoid OABC shown 
below, 
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Proof: Let us first assume that (𝑢, 𝑣)is a lattice point in the interior of the trapezoid 

OABC. Then 
𝑝

𝑛
𝑢 −

𝑝

2𝑛
< 𝑣 <

𝑝

𝑛
𝑢, so −

𝑝

2𝑛
< 𝑣 −

𝑝

𝑛
𝑢 < 0, and −

𝑝

2
< 𝑛𝑣 − 𝑢𝑝 < 0, 

This latter inequality means the number 𝑛𝑣 has a negative least remainder 𝑚𝑜𝑑(𝑝), 

with 𝑣 ∈ 𝑃 = {1, 2, … ,
𝑝−1

2
}. Hence a member of 𝑛𝑃 ∩ 𝑁 corresponds to (𝑢, 𝑣). 

Conversely, assume that for some 𝑣 ∈ 𝑃 = {1, 2, … ,
𝑝−1

2
} the multiplication 𝑛𝑣 has a 

negative least remainder 𝑚𝑜𝑑(𝑝). Then there exists a unique n integer 𝑢 ≥ 1 such 

that −
𝑝

2
< 𝑛𝑣 − 𝑢𝑝 < 0. This double inequality (manipulated in reverse to the above) 

implies 
𝑝

𝑛
𝑢 −

𝑝

2𝑛
< 𝑣 <

𝑝

𝑛
𝑢. On the other hand the right part 

𝑝

𝑛
𝑢 −

𝑝

2𝑛
< 𝑣 of the  

latter double inequality implies 𝑢 <
𝑛

𝑝
(𝑣 +

𝑝

2𝑛
) <

𝑛

𝑝
(

𝑝

2
+

𝑝

2𝑛
) =

𝑛+1

2
.  Since 𝑛 is an 

odd integer this means 𝑢 <
𝑛

2
, and together with 𝑣 <

𝑝

2
 it follows that (𝑢, 𝑣) is an 

interior lattice point of the trapezoid OABC . Since the horizontal distance between 

the lines 𝑦 =
𝑝

𝑛
𝑥 and 𝑦 =

𝑝

𝑛
𝑥 −

𝑝

2𝑛
 is only 

1

2
, there can be at most one lattice point in 

the interior of the trapezoid with second coordinate 𝑣, and therefore the 

correspondence between the set 𝑛𝑃 ∩ 𝑁 and all the interior lattice pontsp inside the 

Trapezoid  of one to one, and the proof is complete. 

 

Note that the above proof was designed for Part (A) of the Corollary, however the 

argument for part part (B) would be word by word the same , except that we should 

add possible lattice points on the interior points of the segment AB of the boundary of 

the trapezoid to the interior lattice points of the trapezoid to get a one to one 

correspondence with the set 𝑛𝑃 ∩ 𝑁, and here is an example, 

 

Example: For 𝑝 = 13 and 𝑛 = 12, the lattice point (
𝑛

2
,

𝑝−1

2
) = (6,6) = (𝑢. 𝑣) is a 

lattice point in the interior of the line segment boundary AB of the trapezoid, which 

happens to correspond to the negative least residue  

−
13

2
= −

𝑝

2
< 𝑛𝑣 − 𝑢𝑝 = 12 × 6 − 6 × 13 = −6 < 0 

Indeed, the congruency 52 ≡ 12 (𝑚𝑜𝑑13) shows that 𝑛 = 12 is a quadratic residue 

(𝑚𝑜𝑑13), and this fact can already be decided by finding that the sum in part (B) of 

the Theorem is an odd, as seen below  

𝜇 = ∑ (⌊
13𝑖

12
⌋ − ⌊

13𝑖

12
−

13

24
⌋)

6

𝑖=1

= 1 + 1 + 1 + 1 + 1 + 1 = 6 
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Note that, in this example it means we have a single lattice point in the interior of the 

trapezoid directly above 𝑥 = 2, 3, 4, 5; and the lattice point (6,6) on the interior of the 

boundary line of the trapezoid which is on top of 𝑥 = 6.  

      
 

 


