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| start by recalling the first Theorem in item #1 of this same Calculus 2 section of
the website on the definite integral version of the method of Implicit Integration,

Theorem Let y = f(Xx) be a differentiable function defined over the open interval
(0,0) and let r = g(#) be the polar representation of the curve of y = f(x)
obtained upon substitutions X =rcos(¢) and y =rsin(d) . Then, for any a >0 the
following will be an anti-derivative for f (x),
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F(x) = r(6)2d6.

Now we apply the above Theorem to conclude the following corollary,

representing the function Ln (x) as follows,
tan~t (1/x?)

Corollary: Ln(x)=— | csc(20)d6. (1)
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Proof: Set f(x)=1/x,and a=1. Applying substitutions X =r cos(d) and
y =rsin(@) in the equation f(x)=1/X, it follows that rsin(é) = ! , and
rcos(6)

therefore
r’ =g(60)* =1/sin(6)cos(f) = 2csc(26).



Also considering that in this particular case for every x>0 we have x f(x) =1, as
in above proposition, the following F, (x) is the anti-derivative for f(x)=1/x
satisfying F, (1) =0,
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Since Ln(Xx) is also an anti-derivative for f(x)=1/x satisfyingLn(1) =0, the

result follows.
Note that, the above integral representation (1) for Ln(x)in the Corollary can also
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F(x)= 2csc(260) d6.

be concluded from the Fundamental Theorem of Calculus, in conjunction with the
chain rule for differentiation. That is, simply by showing that for any x >0 the
derivative of right side of (1) is 1/x.

Riemann sums for the definite integral on the right hand side of (1) in above
Corollary can be used to globally approximate logarithmic function Ln (x).

For any givenx, assuming tan(1/x*) =@, and expressing the right hand side

definite integral in above (1) in the form of limit of the right Riemann sum, we
obtain the following global trigonometric approximation for Ln(x),
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Ln(x) = (% —6) lim

For those values of Ln (x) for which @ =tan™(1/x*)’s are among particular

fractions of 7 the above expansion (2) will provide handsome trigonometric
approximations converging to Ln (x) . The following are only three examples of

such approximations, for three specific values of Xx.

Example 1: For x=4/3 , we have 6 =tan™(1/x?) =%, and (2) implies
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Note that, say for n =4 the above sequence provides approximations 1.0803 and
for Ln(3), which is an approximation for Ln(3) correct to 4 decimals.

Using the trigonometric identity COS(E —a) =sin(«a), the above approximation
will look prettier in the eye, when expressed as the following limit
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Example 2: For x=1/+/~/2 —1 we have & =tan*(1/x?) :% and (2) implies

) 27 T Nnrm
Ln(v2 -1 =-"1lim_ [esc® + )+ ese® + 55y +...+eseE +-5]/n,
( ) 4 [ (4 4n) (4 4n) (4 4n)]

n—oo

which again using the identity COS(% — ) =sin(a) can be expressed better as,
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fo+sec(O)]/n=—2 Ln(\2 -1).
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Example 3: For x=1//2—+/3 we have @=tan™(1/x?) =£ ,and (2) implies,
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which can also be expressed as
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