

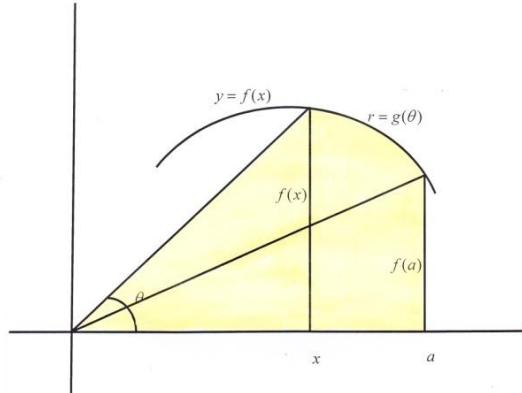
Trigonometric Approximation of Logarithmic Function $\ln(x)$

Ali Astaneh, Ph.D(Lon), Vancouver, BC.

I start by recalling the first Theorem in item #1 of this same Calculus 2 section of the website on the definite integral version of the method of Implicit Integration,

Theorem Let $y = f(x)$ be a differentiable function defined over the open interval $(0, \infty)$ and let $r = g(\theta)$ be the polar representation of the curve of $y = f(x)$ obtained upon substitutions $x = r \cos(\theta)$ and $y = r \sin(\theta)$. Then, for any $a > 0$ the following will be an anti-derivative for $f(x)$,

$$F(x) = \frac{xf(x)}{2} - \frac{1}{2} \int_{\tan^{-1}[\frac{f(a)}{a}]}^{\tan^{-1}[\frac{f(x)}{x}]} r(\theta)^2 d\theta.$$



Now we apply the above Theorem to conclude the following corollary, representing the function $\ln(x)$ as follows,

Corollary: $\ln(x) = - \int_{\pi/4}^{\tan^{-1}(1/x^2)} \csc(2\theta) d\theta. \quad (1)$

Proof: Set $f(x) = 1/x$, and $a = 1$. Applying substitutions $x = r \cos(\theta)$ and $y = r \sin(\theta)$ in the equation $f(x) = 1/x$, it follows that $r \sin(\theta) = \frac{1}{r \cos(\theta)}$, and therefore

$$r^2 = g(\theta)^2 = 1/\sin(\theta)\cos(\theta) = 2\csc(2\theta).$$

Also considering that in this particular case for every $x > 0$ we have $x f(x) = 1$, as in above proposition, the following $F_1(x)$ is the anti-derivative for $f(x) = 1/x$ satisfying $F_1(1) = 0$,

$$F_1(x) = \frac{x f(x)}{2} - \frac{a f(a)}{2} - \frac{1}{2} \int_{\pi/4}^{\tan^{-1}[f(x)/x]} 2 \csc(2\theta) d\theta = - \int_{\pi/4}^{\tan^{-1}[f(x)/x]} 2 \csc(2\theta) d\theta.$$

Since $\ln(x)$ is also an anti-derivative for $f(x) = 1/x$ satisfying $\ln(1) = 0$, the result follows.

Note that, the above integral representation (1) for $\ln(x)$ in the Corollary can also be concluded from the Fundamental Theorem of Calculus, in conjunction with the chain rule for differentiation. That is, simply by showing that for any $x > 0$ the derivative of right side of (1) is $1/x$.

Riemann sums for the definite integral on the right hand side of (1) in above Corollary can be used to globally approximate logarithmic function $\ln(x)$.

For any given x , assuming $\tan^{-1}(1/x^2) = \theta$, and expressing the right hand side definite integral in above (1) in the form of limit of the right Riemann sum, we obtain the following global trigonometric approximation for $\ln(x)$,

$$\ln(x) = \left(\frac{\pi}{4} - \theta\right) \lim_{n \rightarrow \infty} \sum_{i=1}^n \csc\left[2\theta + \frac{2i}{n}\left(\frac{\pi}{4} - \theta\right)\right]/n. \quad (2)$$

For those values of $\ln(x)$ for which $\theta = \tan^{-1}(1/x^2)$'s are among particular fractions of π the above expansion (2) will provide handsome trigonometric approximations converging to $\ln(x)$. The following are only three examples of such approximations, for three specific values of x .

Example 1: For $x = \sqrt[4]{3}$, we have $\theta = \tan^{-1}(1/x^2) = \frac{\pi}{6}$, and (2) implies

$$\ln(3) = \frac{\pi}{3} \lim_{n \rightarrow \infty} [\csc\left(\frac{\pi}{3} + \frac{\pi}{6n}\right) + \csc\left(\frac{\pi}{3} + \frac{2\pi}{6n}\right) + \dots + \csc\left(\frac{\pi}{3} + \frac{n\pi}{6n}\right)]/n$$

Note that, say for $n = 4$ the above sequence provides approximations 1.0803 and for $\ln(3)$, which is an approximation for $\ln(3)$ correct to 4 decimals.

Using the trigonometric identity $\cos\left(\frac{\pi}{2} - \alpha\right) = \sin(\alpha)$, the above approximation will look prettier in the eye, when expressed as the following limit

$$\lim_{n \rightarrow \infty} \left[\sec\frac{(n-1)\pi}{6n} + \sec\frac{(n-2)\pi}{6n} + \dots + \sec(0) \right]/n = \frac{3}{\pi} \ln(3).$$

Example 2: For $x = 1/\sqrt{\sqrt{2} - 1}$ we have $\theta = \tan^{-1}(1/x^2) = \frac{\pi}{8}$ and (2) implies

$$Ln(\sqrt{2} - 1) = -\frac{\pi}{4} \lim_{n \rightarrow \infty} [\csc(\frac{\pi}{4} + \frac{\pi}{4n}) + \csc(\frac{\pi}{4} + \frac{2\pi}{4n}) + \dots + \csc(\frac{\pi}{4} + \frac{n\pi}{4n})]/n,$$

which again using the identity $\cos(\frac{\pi}{2} - \alpha) = \sin(\alpha)$ can be expressed better as ,

$$\lim_{n \rightarrow \infty} [\sec(\frac{(n-1)\pi}{4n}) + \sec(\frac{(n-2)\pi}{4n}) + \dots + \sec(0)]/n = -\frac{4}{\pi} Ln(\sqrt{2} - 1).$$

Example 3: For $x = 1/\sqrt{2 - \sqrt{3}}$ we have $\theta = \tan^{-1}(1/x^2) = \frac{\pi}{12}$, and (2) implies,

$$Ln(2 - \sqrt{3}) = -\frac{\pi}{3} \lim_{n \rightarrow \infty} [\csc(\frac{\pi}{6} + \frac{\pi}{3n}) + \csc(\frac{\pi}{6} + \frac{2\pi}{3n}) + \dots + \csc(\frac{\pi}{6} + \frac{n\pi}{3n})]/n,$$

which can also be expressed as

$$\lim_{n \rightarrow \infty} [\sec(\frac{(n-1)\pi}{3n}) + \sec(\frac{(n-2)\pi}{3n}) + \dots + \sec(0)]/n = -\frac{3}{\pi} Ln(2 - \sqrt{3}).$$