Remarkable Combinatorics Identities

Ali Astaneh, Vancouver, B.C

The n! Identity:

Sometime around November/December 2012 while I was trying to come up with a direct formulation of the nth derivative of a function (see the article with the same title in Calculus part of my website) I concluded a remarkable combinatorial identity for n! in terms of the familiar combinations notation $\binom{n}{j}$ (i.e., combinations of n objects taken j at a time). Here is the identity, followed by a easy example to justify it momentarily,

$$n! = n^n \binom{n}{0} - (n-1)^n \binom{n}{1} + (n-2)^n \binom{n}{2} + \dots + (-1)^{(n-1)} \cdot 1^n \binom{n}{n-1}$$

Or, in sigma notation,

$$n! = \sum_{j=0}^{n-1} (-1)^{j} (n-j)^{n} \binom{n}{j}$$

Example 1 When n = 4 a good exercise for a BC Pre-Calculus 12 would be to show,

$$4! = 4^4 {4 \choose 0} - 3^4 {4 \choose 1} + 2^4 {4 \choose 2} - 1^4 {4 \choose 3} = 4!$$

A proof of the identity can be presented by induction on n, as did an APCalculus student of mine as a challenging project around June 2013.

I needed the way I came up with this identity was when I was trying to conclude a formulation for n^{th} derivative of a function by using L'Hopita's rule n times (see the article title "a direct formula ... "in Calculus section of this website.

The 2^n Identity:

The following identity expresses 2^n in terms of powers of its reciprocal $\frac{1}{2}$. For any positive integer n, we have

$$2^{n} = \binom{n}{n} \left(\frac{1}{2^{0}}\right) + \binom{n+1}{n} \left(\frac{1}{2^{1}}\right) + \binom{n+2}{n} \left(\frac{1}{2^{2}}\right) + \binom{n+3}{n} \left(\frac{1}{2^{3}}\right) + \dots + \binom{2n}{n} \left(\frac{1}{2^{n}}\right)$$

Or, in sigma notation

$$2^n = \sum_{j=0}^n \binom{n+j}{n} \frac{1}{2^j}$$

I must have proved this by induction ages ago.

Example 2 When n = 4 another good exercise for students would be to show,

$$2^{4} = {4 \choose 4} \left(\frac{1}{2^{0}}\right) + {5 \choose 4} \left(\frac{1}{2^{1}}\right) + {6 \choose 4} \left(\frac{1}{2^{2}}\right) + {7 \choose 4} \left(\frac{1}{2^{3}}\right) + {8 \choose 4} \left(\frac{1}{2^{4}}\right)$$

The $(n+1)^n$ Identity:

The following identity expresses $(n+1)^n$ in terms n^{th} powers of successive lower terms. For any positive integer n, we have

$$(n+1)^n = n^n \binom{n+1}{1} - (n-1)^n \binom{n+1}{2} + (n-2)^n \binom{n+1}{3} + \dots + (-1)^{n-1} \cdot 1^n \cdot \binom{n+1}{n}$$

Or, in sigma notation,

$$(n+1)^n = \sum_{j=0}^{n-1} (-1)^j (n-j)^n \binom{n+1}{j+1}$$

Example 3 When n = 4 it can be verified that,

$$5^4 = 4^4 \binom{5}{1} - 3^4 \binom{5}{2} + 2^4 \binom{5}{3} - 1^4 \binom{5}{4}.$$