

On Sums of Consecutive Complete Squares

Ali Asatneh, Vancouver, BC

The following theorem shows that infinitely many times it can happen that the sum of squares of a set of consecutive positive integers would be another square number.

Theorem:

(i) For any $n = 1, 2, 3, \dots$ there are $(6n+1)^2$ consecutive positive integers whose squares add up to a complete square integer.

(ii) For any $n = 2, 3, 4, \dots$ there are $(6n-1)^2$ consecutive positive integers whose squares add up to a complete square integer.

Note that, in part (ii) when $n = 1$ there are still $(6n-1)^2 = 25$ consecutive integers whose squares add up to a complete square integer, because $0^2 + 1^2 + 2^2 + \dots + 24^2 = 70^2$, but the first one isn't square of a positive integer. That is why I have started with $n = 2$.

Proof: Shortly, the proof will make use of the following familiar identity, which can easily been established by mathematical induction on the counting number $m = 1, 2, 3, \dots$.

$$1^2 + 2^2 + \dots + m^2 = \frac{m(m+1)(2m+1)}{6}. \quad (1)$$

Because of complete similarity of proofs in the two parts (i) and (ii), I will only show (i), and leave (ii) as an exercise to the reader.

Let $n = 1, 2, 3, \dots$ and first consider that, since $(6n+1)^2$ is an odd number, and $(6n+1)^2 = 2(18n^2 + 6n) + 1$, any sum of $(6n+1)^2$ consecutive complete square numbers can be expressed as

$$(N - 18n^2 - 6n)^2 + (N - 18n^2 - 6n + 1)^2 + \dots + (N - 1)^2 + N^2 + (N + 1)^2 + \dots + (N + 18n^2 + 6n - 1)^2 + (N + 18n^2 + 6n)^2$$

for some $N > 18n^2 + 6n$, if the first term is to be the square of a positive integer. We will show shortly that, with an educated selection of integer N in terms of n , the above sum will be a complete square. To this end, first consider that each pair of symmetric terms $(N - j)^2$ and $(N + j)^2$ on the two sides of N^2 in above sum add up to

$$(N - j)^2 + (N + j)^2 = 2N^2 + 2j^2,$$

Therefore the above sum can be expressed as

$$[2(18n^2 + 6n) + 1]N^2 + 2[1^2 + 2^2 + \dots + (18n^2 + 6n)^2].$$

Next, using (1) to simplify square bracket (with $m = 18n^2 + 6n$), the above sum becomes,

$$= [2(18n^2 + 6n) + 1]N^2 + 2 \times \frac{(18n^2 + 6n)((18n^2 + 6n + 1)(36n^2 + 12n + 1))}{6}.$$

Or,

$$\begin{aligned} & (6n+1)^2 N^2 + \frac{(18n^2 + 6n)((18n^2 + 6n + 1)(6n+1)^2)}{3} \\ &= (6n+1)^2 [N^2 + \frac{(18n^2 + 6n)((18n^2 + 6n + 1))}{3}] \quad . \quad (2) \\ &= (6n+1)^2 [N^2 + (6n^2 + 2n)((18n^2 + 6n + 1))] \\ &= (6n+1)^2 [N^2 + 2n(3n+1)((18n^2 + 6n + 1))] \end{aligned}$$

As the reader might now have realized, it is enough to express the integer N in terms of n in such a way that inside the above square bracket becomes a complete square; and indeed this is possible if we set,

$$N = \frac{n(3n+1)(18n^2 + 6n + 1)}{2} - 1.$$

Substituting this above N in terms of n inside the last square bracket we get,

$$\begin{aligned} & N^2 + 2n(3n+1)((18n^2 + 6n + 1)) \\ &= [\frac{n(3n+1)(18n^2 + 6n + 1)}{2} - 1]^2 + 2n(3n+1)((18n^2 + 6n + 1)) \\ &= [\frac{n(3n+1)(18n^2 + 6n + 1)}{2}]^2 - 2 \times \frac{n(3n+1)(18n^2 + 6n + 1)}{2} + 1 + 2n(3n+1)((18n^2 + 6n + 1)) \\ &= [\frac{n(3n+1)(18n^2 + 6n + 1)}{2}]^2 - n(3n+1)((18n^2 + 6n + 1)) + 1 + 2n(3n+1)((18n^2 + 6n + 1)) \\ &= [\frac{n(3n+1)(18n^2 + 6n + 1)}{2}]^2 + n(3n+1)((18n^2 + 6n + 1)) + 1 \\ &= [\frac{n(3n+1)(18n^2 + 6n + 1)}{2}]^2 + 2 \times \frac{n(3n+1)(18n^2 + 6n + 1)}{2} + 1 \\ &= [\frac{n(3n+1)(18n^2 + 6n + 1)}{2} + 1]^2 \end{aligned}$$

This completes the proof. [Note that one of the integers n or else $3n+1$ will always be even, so that we do have a positive integer inside square bracket.

Corollary :

- (i) For any $n = 1, 2, 3, \dots$, and for $N = \frac{n(3n+1)(18n^2 + 6n + 1)}{2} - 1$, the following will express the sum of $(6n+1)^2$ complete square integers as another complete integer:

$$\begin{aligned}
 & (N - 18n^2 - 6n)^2 + (N - 18n^2 - 6n + 1)^2 + \dots + (N - 1)^2 + N^2 + (N + 1)^2 \\
 & + \dots + (N + 18n^2 + 6n - 1)^2 + (N + 18n^2 + 6n)^2 \\
 & = (6n+1)^2 \left[\frac{n(3n+1)(18n^2 + 6n + 1)}{2} + 1 \right]^2
 \end{aligned}$$

- (ii) For any $n = 2, 3, \dots, 1$, and for $N = \frac{n(3n-1)(18n^2 - 6n + 1)}{2} - 1$, the following will express the sum of $(6n-1)^2$ complete square integers as another complete integer:

$$\begin{aligned}
 & (N - 18n^2 + 6n)^2 + (N - 18n^2 + 6n + 1)^2 + \dots + (N - 1)^2 + N^2 + (N + 1)^2 \\
 & + \dots + (N + 18n^2 - 6n - 1)^2 + (N + 18n^2 - 6n)^2 \\
 & = (6n-1)^2 \left[\frac{n(3n-1)(18n^2 - 6n + 1)}{2} + 1 \right]^2
 \end{aligned}$$

Examples

- (a) For $n = 1$, $(6n+1)^2 = 49$. Therefore by part (i) of the Corollary, setting

$$N = \frac{1(3+1)(18+6+1)}{2} - 1 = 49, \text{ we have}$$

$$(49 - 24)^2 + (49 - 23)^2 + \dots + 49^2 + \dots + (49 + 23)^2 + (49 + 24)^2 =$$

$$49^2 \left[\frac{1(3+1)(18n+6+1)}{2} + 1 \right]^2 = 49^2 \times 51^2$$

$$\text{Or, } 25^2 + 26^2 + \dots + 49^2 + \dots + 72^2 + 73^2 = (49 \times 51)^2.$$

- (b) For $n = 2$, $(6n-1)^2 = 121$. Therefore by part (ii) of the Corollary, setting

$$N = \frac{2(6-1)(72-12+1)}{2} - 1 = 304, \text{ we have}$$

$$(304 - 60)^2 + (304 - 59)^2 + \dots + 304^2 + \dots + (304 + 59)^2 + (304 + 60)^2 = 11^2 \times 306^2.$$

$$\text{Or, } 244^2 + 245^2 + \dots + 304^2 + \dots + 363^2 + 364^2 = (11 \times 306)^2.$$

- (c) For $n = 2$, $(6n+1)^2 = 169$. Therefore by part (i) of the Corollary, setting

$$N = \frac{2(6+1)(72+12+1)}{2} - 1 = 594, \text{ we have}$$

$$(594 - 84)^2 + (594 - 83)^2 + \dots + 594^2 + \dots + (594 + 83)^2 + (594 + 84)^2 = 13^2 \times 596^2.$$

$$\text{Or, } 510^2 + 511^2 + \dots + 594^2 + \dots + 677^2 + 678^2 = (13 \times 596)^2.$$

(d) For $n = 3$, $(6n-1)^2 = 289$. Therefore by part (ii) of the Corollary, setting

$$N = \frac{3(9-1)(162-18+1)}{2} - 1 = 1739, \text{ we have}$$

$$(1739 - 144)^2 + \dots + 1739^2 + \dots + (1739 + 144)^2 = 117^2 \times 1741^2.$$

$$\text{Or, } 1595^2 + 1596^2 + \dots + 1739^2 + \dots + 1882^2 + 1883^2 = (17 \times 1741)^2.$$