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On Sums of Consecutive Complete Squares 
Ali Asatneh,  Vancouver, BC 

 

The following theorem shows that infinitely many times it can happen that 

the sum of squares of a set of consecutive positive integers would be another 

square number. 

Theorem:  

(i) For any ... 3, ,2 ,1n  there are 2)16( n  consecutive positive  

     integers whose squares add up to a complete square integer. 

 

(ii) For any ...  4, 3, ,2n  there are 2)16( n consecutive positive  

     integers whose squares add up to a complete square integer. 

 

Note that, in part (ii) when 1n  there are still 25)16( 2 n  consecutive 

integers whose squares add up to a complete square integer, because 
22222 7024...210  , but the first one isn’t square of a positive 

integer. That is why I have started with 2n . 

 

Proof:  Shortly, the proof will make use of the following familiar identity, 

which can easily been established by mathematical induction on the 

counting number  ... 3, ,2 ,1m  .  
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Because of complete similarity of proofs in the two parts (i) and (ii), I will 

only show (i), and leave (ii) as an exercise to the reader. 

 

Let ... 3, ,2 ,1n  and first consider that, since 2)16( n  is an odd number, and 

1)618(2)16( 22  nnn , any sum of 2)16( n consecutive complete square 

numbers can be expressed as  
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for some          , if the first term is to be the square of a positive 

integer. We will show shortly that, with an educated selection of integer N in 

terms of   , the above sum will be a complete square. To this end,  first 

consider that each pair of symmetric terms        and        on the two 

sides of 2N in above sum add up to 
2222 22)()( jNjNjN  , 

Therefore the above sum can be expressed as 
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 ])618(...21 [  2 ] 1) 618( 2 [ 222222 nnNnn  . 

 

Next, using (1) to simplify square bracket (with nnm 618 2  ), the above 

sum becomes,  
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           . (2) 

                   

As the reader might now have realized, it is enough to express the integer N

in terms of n  in such a way that inside the above square bracket becomes a 

complete square; and indeed this is possible if we set,  

 

1
2

)1618)(13( 
 

2





nnnn

N . 

Substituting this above N in terms of   inside the last square bracket we get, 
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This completes the proof. [Note that one of the integers   or else 13 n  will 

always be  even, so that we do have a positive integer inside square bracket. 
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Corollary :  

(i) For any ... 3, ,2 ,1n  , and for 1
2
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     following will express the sum of 2)16( n complete square integers as 

     another complete integer: 
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(ii)   For any ... 3, ,2n  l, and for 1
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       as another complete integer: 
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Examples 
 

(a)  For 1n , 49)16( 2 n . Therefore  by part (i) of the Corollary, setting  
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           Or,                222222 )5149(7372...49...2625  . 

 

(b) For 2n , 121)16( 2 n .Therefore  by part (ii) of the Corollary, 

setting  

         3041
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N , we have 

       2222222 30611)60304()59304(...304...)59304()60304(  . 

          Or,              222222 )30611(364363...304...245244  . 

 

 

  (c)  For 2n , 169)16( 2 n .Therefore  by part (i) of the Corollary, setting  
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2

)11272)(16( 2
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
N , we have 

       2222222 59613)84594()83594(...594...)83594()84594(  . 

      Or,            222222 )59613(678677...594...511510  . 

 

  (d)  For 3n , 289)16( 2 n .Therefore  by part (ii) of the Corollary, setting  

       17391
2

)118162)(19( 3
 


N , we have    

                    22222 1741117)1441739(...1739...)1441739(  . 

       Or,       222222 )174117(18831882...1739...15961595  . 

 
 


