

Binomial Expansion for Reciprocal Powers

Ali Astaneh PhD(Lon), Vancouver BC

In the previous article of this same section of the website I showed how Binomial Expansion looks like for $(a + b)^{-n}$ when n is a positive integer. In the present article I will show how the expansion will look like for

$(a + b)^{\frac{1}{n}} = \sqrt[n]{a + b}$, where n is a positive integer. Again I start with a lemma first, but this time mathematical induction will not work to prove the lemma. What will work is a simple application of the so called

Maclaurin series for function $\sqrt[n]{1 + x} = (1 + x)^{\frac{1}{n}}$.

Lemma For any positive integer $n > 1$, and any real number $-1 < x < 1$,

$$\sqrt[n]{1 + x} = 1 + \frac{1}{n} \frac{x}{1!} + \frac{1}{n} \left(\frac{1}{n} - 1 \right) \frac{x^2}{2!} + \frac{1}{n} \left(\frac{1}{n} - 1 \right) \left(\frac{1}{n} - 2 \right) \frac{x^3}{3!} + \dots \quad (1)$$

In sigma notation this means,

$$\sqrt[n]{1 + x} = 1 + \sum_{k=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} - 1 \right) \left(\frac{1}{n} - 2 \right) \dots \left(\frac{1}{n} - k + 1 \right) \frac{x^k}{k!}$$

Proof: I recall that the Maclaurin series (that is the Taylor series about the origin $a = 0$) for any infinitely differentiable function $f(x)$ is

$$f(x) = f(0) + \frac{f'(0)}{1!} x + \frac{f''(0)}{2!} x^2 + \frac{f'''(0)}{3!} x^3 + \dots$$

If you now apply the above to the function $f(x) = \sqrt[n]{1 + x} = (1 + x)^{\frac{1}{n}}$ over the interval $-1 < x < 1$ you exactly arrive at the equation (1). This completes the proof of the Lemma.

Remark : The above Lemma also implies the rare occurrence of the fact that for $-1 < x < 1$,

$$\begin{aligned} \left[1 + \sum_{k=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} - 1 \right) \left(\frac{1}{n} - 2 \right) \dots \left(\frac{1}{n} - k + 1 \right) \frac{x^k}{k!} \right]^n &= 1 + x \\ &= \frac{1}{1 - x + x^2 - x^3 + \dots} \end{aligned}$$

I now bring a generalization of the above Lemma as a proposition.

Proposition : Let $a, b > 0$ be real numbers and let $-\frac{b}{a} < x < \frac{b}{a}$. Then for any positive integer $n > 1$ we have the following expansion,

$$\sqrt[n]{ax + b} = \sqrt[n]{b} + \sum_{k=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} - 1 \right) \left(\frac{1}{n} - 2 \right) \dots \left(\frac{1}{n} - k + 1 \right) \frac{a^k x^k}{k! b^{k-\frac{1}{n}}}.$$

Proof: Since $\sqrt[n]{ax + b} = \sqrt[n]{b} \sqrt[n]{1 + \frac{ax}{b}}$ and since $-\frac{b}{a} < x < \frac{b}{a}$ implies $-1 < ax/b < 1$, the above Lemma (when x is replaced by (ax/b)) leads to

$$\begin{aligned} \sqrt[n]{ax + b} &= \sqrt[n]{b} \sqrt[n]{1 + \frac{ax}{b}} \\ &= \sqrt[n]{b} \left[1 + \sum_{k=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} - 1 \right) \left(\frac{1}{n} - 2 \right) \dots \left(\frac{1}{n} - k + 1 \right) \frac{a^k x^k}{k! b^k} \right] \\ &= \sqrt[n]{b} \\ &+ \sum_{k=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} - 1 \right) \left(\frac{1}{n} - 2 \right) \dots \left(\frac{1}{n} - k + 1 \right) \frac{a^k x^k}{k! b^{k-\frac{1}{n}}} \end{aligned}$$

and the proof is complete.

Corollary: Binomial Expansion for Reciprocal Powers

Let $b > a > 0$ be real numbers and let $n > 1$ be a positive integer, then if you set $x = 1$ in the assertion of the above Proposition, you get the following binomial expansion for reciprocal described as :

$$\sqrt[n]{a + b} = \sqrt[n]{b} + \sum_{k=1}^{\infty} \frac{1}{n} \left(\frac{1}{n} - 1 \right) \left(\frac{1}{n} - 2 \right) \dots \left(\frac{1}{n} - k + 1 \right) \frac{a^k}{k! b^{k-\frac{1}{n}}}.$$

Or, in shorter notation as

$$\sqrt[n]{a + b} = \sqrt[n]{b} + \sum_{k=1}^{\infty} \prod_{j=0}^{k-1} \left(\frac{1}{n} - j \right) \frac{a^k}{k! b^{k-\frac{1}{n}}}.$$