A Method of Implicit Integration
Ali Astaneh,Ph.D(Lon), Vancouver, BC.

As far as my decades of teaching Calculus is concerned, most likely the following is
the deepest attempt to integrate a function defined implicitly, even though (just
like in the case of implicit differentiation) here too the anti-derivatives are
obtained in terms of both x and y in general. So here first bring the first (definite
integral) version of the method,

Theorem 1 [A. Astaneh] Let y = f (X) be a differentiable function defined over
the open interval (0,) and let r = g(@) be the polar representation of a curve

y = T (X) upon substitutions x =rcos(@d) and y =rsin(#d) . Note that here, if the
function y = f (x)is defined by an implicit relation, say R(x,y) = 0, it is then
understood that r = g(#) is the polar version of this implicit relation. Then, for
any a > 0 the following will give an anti-derivative for f (X), which in general (and
eventually) will be expressed in terms of both x and y.
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Proof: In the above diagram, let F,(x) be the anti-derivative for y = f (X)
defining the area under the graph of f (x) over the interval [X,a], and let A
denote this area. Also, let A, denote the polar area enclosed by the origin, the
polar curve r = g(@), and the polar rays of line defined by equations
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6,=tan(f(a)/a), 6, =tan™(f (x)/x). Then the shaded area in the above
diagram can be represented by the flowing equal expressions,

xf(x) A&_af(a) VA *)

Using the anti-derivative F (X), for f(x), and applying the Fundamental
Theorem of Calculus upon it to find the area under the curve of y = f (X) over the

interval [X,a], and also using the popular formula
1 o, 5
> Ll r@)* do

to express the, the above equation (*) can be expressed as

X T (x) a f(a) 1 tan [ £ (x)/x] 5
+F (@) -F(x)= 2 L (2)/2] r@)" deo.
Since by assumption F,(a) =0, it foIIows,
X f(X) af(@ 1 pantrrcoma

FR(x ( )_ 2 _E.‘;anl[f(a)/a] r(49)2 d@,

Therefore
—1f (%)
_ af (@ _xf() 1 f RER
F(x) =F(x)+ > =5 2 )ynes @ r(6)-dé.
a

is an anti-derivative for y = f (X), and the proof is complete.

Given a specific implicit relation, and when the real number a is pre-selected,
than the above Theorem works like it does in the following four examples of
different nature.

Example 1: Let y= f(X) be the function implicitly defined by the relation
y(x* +y*)=2x, x=0,y>0. (1)

Find an anti-derivative F(x) for the function y = f (x) with initial condition

F@)=0.

Analytic Solution: Upon polar substitutions of X = pcos(¢) and y = psin(f) in

(1), the relation is converted to the polar form p* = 2cot(9), or p =./2cot(H)

withthe following polar graph, which at the same time represents graph of




relation (1),

y=f(x)

p=+2cot(8),0<8 <2

Now let F(Xx) be the anti-derivative for y = f (x) defining the area under its
graph over the interval [1,X], and let A denote that area. Also, let A, denote the

polar area between the polar curve, the origin, and between arrays of lines
O=rnl4 and @=tan*[f (Xx)/x] . Then the above figure shows the validity of the

following relation between the two areas A and A, ,

1f(1) A&_xf(x) A

By the Fundamental Theorem of Calculus, and the popular polar formula for the
polar area A, the above relation implies,

X f(x) 1 (era
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Therefore the solution is F(X) = x2y +In(= ()i/{ Y )) —%, where y = f(x)is the
y

function implicitly defined in (1).
Algebraic Verification of the Solution: It is enough to show that the derivative of

/ 2 2
the right hand side of the equation F(x) = XY, In(M) 1 isy=f(x).
2 J2y 2
To this end, in the following, when trying to simplify the derivative of the right
hand side of the equation we will make use the original implicit relation (1). That

is, when the expression y(x? + y?) shows up as the denominator of a fraction we
will replace it by2x.

alxy vty 1f_d [xy 1 2 4,2y _no 1
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Example 2: Let y= f(X) be the function implicitly defined by the relation

(X2 +y*)=x*-y*, 0<x<1,y=0. (2)
Find an anti-derivative for y = f (x) satisfying F(1) = 0.

Analytical solution: Substituting X = p c0s@ and X = psiné in (2), the Cartesian
relation is converted into a polar relation as follows

(X2 +y*)? =x" -y’ — p*=p°cos’@— p’sin® O = p’cos20 — p* =c0s20.
The conditions 0<x<1 and y >0mean, here we are concerned with the upper
right part of the Lemniscate curve p® = c0s2@ as seen below,



p? = cos 26 y=f(x)

f@ 4,

x.

Let F(X) = J;l f (x)dx, F(1) = 0, be the desired anti-derivative for y = f (x)
defining the area under the graph over the interval [X,1], for x>0, and let A
denote that area under the curve y = f (X) over the interval [X,1]. Also, let

A= 7 ploya(o)

be the polar area enclosed by the Lemniscate curve, the X-axis, and the lines
represented by the polar rays #=0 and & =tan™'[f(x)/x]. Then, as seen in the

diagram, the following relation holds between the two areas A and A, ,

X T(x)
A=A =
By the Fundamental Theorem of Calculus the left hand side is just

A =F() - F(x) . Therefore, also using the polar definite integral formula for the

area A, the above relation can be expressed as
1 ptanirf (07 X (x)
FO-FX) == cos(20)dg ———=.
() -F(x) 2I° (26) 5

Hence, considering F(1) =0, we have

F(X) _ x f (X) _ 1[3“’](29)] Otan’l[f(x)lx] .
2 4

Or,

xf (X xf (X
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Therefore the solution is F(X) = -— —, where y = f(x)is the function

2 2(x°+y)

implicitly defined in (2).



Algebraic Verification of the Solution : Again, it is enough to show that the

derivative of the right hand side of F(x) = Xy _ Xy is y= f(x).To this
2 2(x*+y?)

end, this time in our verification when the expression (x2 + y2)? shows up as a

denominator of a fraction we will make use the assumed original implicit relation

(2) and replace it by (x2 — y?) .

d X X 1 Ly +xy)(+ ) = xy(2x + 2y
ay_ zy 2]:_(y+xy)__(y y')( Zy)“y( ') _
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Remark: Incidentally the implicit relation (x* + y*)* = x* — y® in above Example 2
can be solved fory > 0, but in a not so handsome expression as follows,

1 2 2
=—//8X" +1—(2x" +1).
y NE \/ ( )

Therefore, the above solution to Example (2) implies we have been able to
explicitly integrate the rather complicated looking integral,

j%\/\/sz +1-(2x* +1) dx, 0<x<1,

as Example 2 implies that the solution is,

1 > ) X)) xf (X)
jﬁ\/\/Sx +1-(2x* +1) dx = ) 2[x2+f(x)2]+c'

1
V2
substitution of this expression for f (X), and algebraic simplification, the above
integral is obtained as,

T e _x\/\/8x2+1—(2x2+1)(\/8x2+1—3)
j\/\/8X +1-(2x* +1) dx = BT iC.

The author, for one, doesn’t recall any previously known integration technique to
handle the above explicit integral. Consider this as a side job bonus from the
method of implicit integration presented in this article.

Where f(X)= \8x* +1 —(2x* +1) happens to be the integrand itself. Upon




Example 3 Let y = f(X) be the function implicitly defined by the relation
(X +y*—4x)* =4(x*+y?), 0<x<6, y>0. (3)
Find the anti-derivative for y = f (x) satisfying F(6)=0 .
Analytical solution: Again, substituting X = c0s@ and x= psiné in (3), the
Cartesian relation is converted into a polar relation as follows,

(p* —4pcosh)’ =4p> — (p—-4cosh)’=4 — p=4cosf+2.

Since the case p=2—-4c0sd implies x= pcosé =cos(f) (2 — 4cos(0)) from
which the value x =6 will never be obtained for X, the requirement F(6)=0
implies that here we are concerned with the polar equation p=2+4c0sd

whose graph is part of the Limacon in the first quadrant curving counter-
clockwise from point (6,0) to the point (0,2) on the plane, as seen below

p=2+4cost

y=fx)
fx)| A,

Again, let F (x) be the anti-derivative for y = f (x) defining the area under its
graph over the interval [X, 6], and let A denote that area. Also, let A, denote
the polar area enclosed by the Lemicon, the X-axis, and the line with the angle of
inclination @ =tan™[f (x)/x]. Then the above figure shows the validity of the
following relation between the two areas A and A, ,

X f(X)
A=A -2
By the Fundamental Theorem of Calculus, and the polar coordinate formula for

A, , the above relation can be expressed as

F(6)— F(x) = % [V [24 4cos@)) do - fz(x) .

0



Therefore, considering F(6) =0, we have

F(x)=2> T _, jotanfl“(x’“][l+ 4cos(0) + 4cos? (0)]d6 .
Or,
F(x)=2> fz(x) —2 jj”’l““)’”[u 4¢0s(0) + 2c0s(26) + 2] dO .
Hence,
F(x)="= fz(x) —2[30 + 4sin(0) +sin(20)]|| ",
Fo9="Y -2[3tan (%) + by, 2

Jxi+y? X +y2]'

The Algebraic verification of the solution for Example 3 is left to the reader.

Note that, in the analytical solution for the following example the letter r has
been used instead ofp.

Example 4: Find an anti-derivative for the function y = f (x) implicitly defined by

X2 +

2
Note that, the point with coordinates (—/2 €'%,0) is an X -intercept of y = f ().

In( y2)=7z+tan‘l(y/x), xe[-/2e"2,0),[0,~2e"*).  (4)

Analytical Solution: Let F (X) :j f (t)dt be the area under the graph of f(x)and

directly above the interval [a, x], where a=—J/2 e"'? is the X -intercept of f(X).
Then by Fundamental Theorem of Calculus F,(X) is an anti-derivative for f (x).
Moreover, the coloured area shown in the diagram below can be expressed as

xf (X)
HORES
is — xf(x)/2, because x<0).

. (Note that for x €[-6,—1] the triangular part of the coloured area



y=f(x)
(x f(x))

fx)

J\E) — 7f+ tan’:l(y/x)

a - ¥

On the other hand, with the selection of the polar argument @ as
0= +tan*(f(x)/Xx), we know from the same coloured polar area is simply

1.
5 7r+tan’1[f(x)/x]r(9)2d9 , Where r(@) is the polar representation of the relation (4),

in both quadrants | and I, and hence that of the function y = f (x) as well.

Therefore we have
Xf (x) 1

2
F( )_ 2 n+tan’l[f(x)/x]r(0) do. (*)

Next, it is easy to check that upon polar substitutions X =rcos(d) and
y =rsin(@), and x> + y*> =r? in (4) the relation is simplified into 7% = 2e?.
Substituting this in (*) we get,

xf (x) 1 T )
o 289 eze67 — % _ @rHan [f(x)/x].
2 z+tan [ f (x)/x] T+ tan,l[ f(X)/X]

F,(x) -

Xf (X) _ e7r+tan’1[ f(x)/x]

Therefore, F (X)= is an anti-derivative fory = f (x).

Algebraic verification of the solution: It is enough to show that the derivative of

the right hand side of F,(x) = XHX) gL (/]

is just f (X), so here we go
d X f(X) z+tan [ f (x)/x] 1 1 X f|(X) f(X) m+tan” [f(x)/x]
— —e =—(f(X)+x f'(x)) - e

v ] 2(() (X)) 1 T (0)°

On the other hand, since (4) implies (X* + f(x)?) = 2™ '™/ the above right
hand side is simplifies into

00+ 7'00) - (X”X; o) _ 2O+ X T00) =2 (X F (= F()=

X f(x)

-1
e7z+tan [f(x)/x] + C ,

F(x)=




Having observed the efficiency of the method through above examples (as well as
the exercises | have laid out at the end of the article), it would be desirable also to
bring the indefinite integral version of Theorem 1 as follows, whose proof is given
regardless of a graph, and any specific real numbers involved a .

Remark: Note that my method of Implicit Integration can be interpreted in the
language of Differential Equations, and | have preferred to explain this in a
separate article (see article #8 on this same Calculus 2 section of the website).

Theorem 2 [A. Astaneh] : A function y = f (X) defined by an implicit relation
R(X,y) =0 on a specific domain is integrable if and only if, when upon
substitutions x =r(8)cos(@), y=r(d)sin(f) the implicit relation is converted

into polar form p = r(0), the square polar function p® =r(8)? is integrable in
terms of @. Moreover, we have

xf(x) 1

Jf(x)dx = EJ r(6)%d6,

where 0 = tan™! [@]

Proof Assuming p = r(8) represents the polar version of the implicitly defined
function y = f(x) upon popular polar substitutions x =r(€)cos(@) and

y =r(0)sin(@) , a normal integral such as the left hand sideJ. f (X)dx above can

be first converted into,

[ £ (x)dx =] ydx= [r(8)sin(6) d[r(8)cos(8)] = | psin(6) d[pcos(6)]
= [ psin(0)[p'cos(8) — psin(F)1d6 = [ pp'sin(6) cos(@)d (8) — [ p*sin®(6)d O

_ % [ pp'sin(26)d (6) - % [ p[L—cos(20)]d6 (i)

Next, an application of the method of integration by parts applied to the first
integral on the right hand side of (i) ; with U =sin(28) and dV = pp'd@, will show

that the first integral is the same as
% [ pp'sin(26)d(6) = % o sin(26) — % [ p*cos(26)d6 .
Therefore

1, 1., 1.,
[ £ (x)dx =P sin(26) -5 [ p* cos(260)d6 -5 [ P*[1—cos(26)1d6
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= z(p sin 8)(p cos 0) _%fp2d9= J’f(x)dx:m—%

The above integral equation (ii) also implies y = f (X) is integrable if and only if

[r©*de . (i)

p° =r(0)%is, and the proof is complete.

Application 1: Integrate the function y= JI-x?+1+ X%, 0O< X <+/3
(a seemingly unlikely integrable function by any known method )

Solution: As the reader can verify that upon substitutions X = p cosé and
X=psing x=r(0)cos(d) the polar representation of the relation

y= \/1— X* + 1+ x> will be p?(0) =2+ cos’ @, which happens to be integrable
with respect to @ , so the Theorem applies best. Since from elementary
trigonometry integration we also know that

[(2+cos® ) d0=>0+1sin20=>0+1sin dcosé,
2 4 2 2

The theorem implies
j\/l—x?‘ +1+ XZdX:Ide=%—%Ip2d0:

X 156 thngcosasc =X et Y Y qic
2 2272 2 227 X 2 +yY)
Xy 1 S
_ X 1-2tan Y4
27 2(L+~N1+x%)" 4 X
Where y:\/l— X? + 1+ x* , which means,
j\/l—x2+\/1+ x2 dx =
x1= X + 1+ X fo L1 g 5.0 VI-x 4dtext
2 20+V1+x?)" 4 X

The following application can be considered as a generalization of Application 1.

Application 2 (A two parameter family of integrals): Let a,b >0, and consider the
problem of integrating the function

11



:\/a—x2+\/a2+bx2, 0<x<a

and recall that, the method of implicit integration simply says if r = p(68) is the polar

representation of the relation y :\/a x> ++/a> +bx? , then
[ £ (x)dx _Xf(x) 1j (0)d0.

Since presently the polar representation of the relation y = \/a —x?++a’ +bx’ can

be verified to be p*(0) = (2a + g) + 200820 , and since

[[(2a+ 9) + Ecosze] dé=(2a+ 9)6’ +Pin2g- (2a+ 9)6’ +Lsinocose ,
2 2 2 4 2 2

the integral relation (1) implies

j\/a—x2+«/a2 +bX2dX=Jde=ﬁ—ljp2d9=

xy 1

———[(2a+ )¢9+ bsmé’cose] +C _———[(2a+—)tan*l y . bxy

_ Y qic
2 2 2 X 2(x2+y2):I
_Xno P g @D Yac
2(X"+y°) 4 X
where y = \/a —Xx?* ++/a’* +bx* , which means,
j\/a—x2+\/a2+bx2dx:
x\/a—x2+«/az+bx2 b b.. \/a—szm/aerbx2
[1- ]-(a+-=)tan +C
2 2(a++/a® +bx?*) 4 X

Application 3 (El Ganzo 2016): Integrate the function

y=Ff(X)=x"*VXx+x*+2.

( Another function unlikely to be integrated by other techniques)

Solution: This time the polar representation of the function can be written as

p*(0) = %tan“ 6, and therefore the Theorem implies
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X2 x+x +2 dx:fydx:ﬁ—ljpzdﬁz

Xy 1jt 4¢9d9————[9—tan<9+ tan® @]+ C =
2 2 3

xy_l o

Where Yy =X¥’X++/X* +2 . Thatis,

[X*2 X+ X +2 dx =
XX+ AXE 42 —%X”z\/x-l-\/xz +2 +$x3’2(x+«/x2 +2X+NXE+ 2.

2
+%tan‘1(x”2\/x+«/x2 +2)+C

Note that, in above, to evaluateftan“@ d@, upon substitution u=tan@, we have

du
1+u

du:(1+tan2¢9)dt9:(l+ u?)do, do= —, and therefore

[tan*6do = j du Jlu? -1+ 12]du:1u3—u+tanlu:
1+u 3
3
1tan30—tan6?+6’:y—3—1+tanlx.
3 3x° X X

Application 4: Consider the problem of integrating the function
f(x)=+va’ . |x|<a.

This is usually accomplished by the conventional substitutions x = a sin 8 or
X = a sin @ , but our Theorem’s integration formula offers a more clean cut that any of
those substitutions. Consider the polar representation p(6) = a of the circle

representingy =+/a’ — x* thenjf(x)dX—sz(X) 1I (0)’d@ implies
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2
2 2 2 2
_X a2 x> 1 2dHzxa x> 1 204+ C.
2 2 2
:Xa—_x_a_cos‘li_I_C
2 2 a

The above answer may seem a bit different from the common solution seen for the
indefinite integral J.f\/a2 — x*dx in literature, as
xva’-x* a® . X
j\/az —x*dx=——"+—sin* = +C.
2 2 a

But that is only because of the identity sin™* X +cos™ X =xz/2 , the two answers are
actually the same.

Application 5: (A first sequence of implicitely integrable functions)

Let n=2,3,... be a positive integer, and consider the problem of integrating the

function
2n

y=\Vx"t-x*, 1<x
and recall that, the method of implicit integration simply says if r= p(60) is the

2n
polar representation of the relation y=Vx"* —x* , then

xf(x) 1
f(X)dx="—="2-=| p(0)’do. (1)
[0 5 ZIP( )

2n
Since presently the polar representation of the relation y=1x"* — x* can be
verified to be p=sec" @, and since a routine substitution u=tané to integrate
the polar function p? =sec®" @ implies

1 (n-1 11 (n-1
sec”"9dO=|1+u’)""du= u®du = tan >0
ez odo-faewyau=( (" Hurau-§ L] Hno,

the integral relation (1) will imply,
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2n xy 1 xy 122 1 -
X" —x2dx=|ydx=">-=|p(0)’do="2-= tan**0+C
I Jyde=" =5 p0rdo=7 2§2k+1( kJ

n-1 n-1
ﬁ_l 1 (X)2k+l +C
2 20 2k+10 kK X
2n
where y=Vx"! — x*, which means,
2n
2n 2n n— _ n-1 _ y?2

JVxm - xdx_—[X\/x“—x - ( j(u)mhc.

ko 2k +1 k X
For example:, when n=4, we have

| xg x2dx == [X\/x3—x —ZS‘, L LBJ( X3_X2)2k”] C=

0 2k +1(k

_[Xm_ﬁ ﬁ ﬁ ﬁ

)’ ——(

Application 6: (A second sequence of implicitly integrable functions)

Let n=1,2,... be a positive integer, and consider the problem of integrating the

function
2n
y=Vx"? —x*, 1<X
and recall that, the method of implicit integration simply says if r= p(60) is the

2n
polar representation of the relation y=1Xx"2 —x* , then

[+ ax="T) 1[ ©7do. ()

2n
Since presently the polar representation of the relation y =V x"? —x* can be
verified to be p® =cos" @, the integral relation (1) will imply,

j\/x"inz—xzdx:jydx:%—%jp(e)zdezg—%jcos“0d0

For example: (a) When n=1, we have p* =co0s@ and
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2
3 xy 1 Xy y
X3 — dX———— cosfddf@=—L—-=sin@+C = - +C
2
where y =\ x® —x*, which means,

\/2 \/2 4 2
XVX3 —x° X3 — x? (x® —DVx3 —x?
-— 1 +C= i

2X? 2X3

(b) When n=3, we have p° :00339:%(00539+3c056’) and

2
j X3 — x2dx = +C.

j\/xg—xzdx=ﬁ—ljcosWdezﬁ—Ej(cos39+3c039)d9=

%—1[ sm39+3sm¢9]+c_%—1[ (3sin@ — 4sin’ @) + 3sin@] + C =

ﬂ—i[sme—lsm 6]+C_—y—lsm6’[l——sm 0] =
2 3 2 2 3

2

ﬂ—lsin0[2+coszz9]+cz—y— y [2+ ZX —]+C
2 6 2 BYx*+y’ (X" +y°)

6
where y=Vx® —x*, which means,

\/ 6 \/ 4 4 4
6 5 2 5 5 5
: XV X® —X 1-x X°V1-X
JVxe —xdx = - —

2 3 6
Application 7: (A third sequence of implicitly integrable functions)

+C

Let n=0,12,... be a positive integer, and consider the problem of integrating the
function
4
y=xyx>t-1,
and recall that, the method of implicit integration simply says if r= p(60) is the

polar representation of the relation y = x\ x> —1 , then
xf(x) 1
[ f(x)dx= () j(e)de (1)

4
Since presently the polar representation of the relation y =XV x*"* —1 can be
verified to be p® =sec®™* @, the integral relation (1) will imply,
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jX\/x2n41 —1dx:jydx:%—%jp(@)zda—%—ljsecz”“9d9+c

1-x*
X

|
)
S
o

For example , (a) When n=0, we have y=xXJX* —1=+/x? —
p° =secd , therefore the integral relation (1) implies,

lel— x* Xy

dx = ———jse 6’d<9——y——ln(sec¢9+tan0)+C—
X 2

%—%|n(—“+y+¥)+c

where y— . Since 4/x? Vi we have,
™ _X4 —ll (— X e
X X’

E[«/l— f—In(l+~V1-x*)+In(x*)]+C
(b), when n=1, we have y=xx" -1,
2 xy 1 2 xy 1 1
[x/x —1dx:———jsec Qdezg—ax—[secetaneﬂn (secd +tand)]+C =
xy 1 (\/X YW, (\/ y)]+C

2 4 X’
where y=Xx+/x* —1, which means,

jx\/x“—1dx=%[2x2\/x“—l—x2 x*—1-In(x* +4/x* -1)]+C =
XX =1 —In(x* +vx* =1)]+C

So far, in dealing with the method of implicit integration we have been exclusively
concerned with finding solutions to challenging Cartesian integrals by converting
them into manageable trigonometric integrals according to the integration
formula,

1
jydx=%—§jp(9)2d0.

A second point of view would be that the above integral relation can be expressed
in a “reverse” form, that is the polar integral Ip(@)zdé’ on the right hand side can
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be expressed in terms of the Cartesian integral Iydx on the left. More precisely,

upon substitutions X = pcos(@) and y = psin(&) on the right hand side of the

above integral formula, and necessary simplifications, the formula can be
expressed in the form

[ p(0)2d9=% p(6)*sin(26) - 2] yalx.

This reversed form can be used to find some challenging trigonometric integrals
by reducing them manageable Cartesian integrals.[ydx. A typical example is,

Aplication 8: Consider the problem of integrating trigonometric function
sec’(0) In(cotd), and set p* =sec?(8) In(cotd). Then, upon substitution of

sec’(0) In(cotd) for p(0)? on both sides of (2) we can get,

[sec’ @ In(cotd)d6 = %sec2 6 In(cotd)sin(26) — 2[ ydx.

It is therefore enough to find the Cartesian representation y = f (x) of the polar
equation p” =sec’(d) In(cotd) first, and then integrate Iydx it in the right hand
side and then use the relation X = pcos(0) to get the desired solution.

In order to find the Cartesian form of the equation p® =sec?*(d) In(cotd) , we

2 2
X
+2y ,and cotd =— in the
X y

: X
only need to substitute p® =x* +y?, sec’* @ =

X* +y?

X
—— In— which can be simplified into
X

y

X 2 1 .
x> =In=. This in turn implies y = xe™, for which Ide:—Ee‘x . Hence,
y

j sec’ @ In(cotd)do = %sec2 @ In(cotd)sin(26) — 2f xe ™ dx =

relation. Then we get X° + Yy’ =

tan @ In(cotd) +e™ +C =tan @ In(cotd) + e~ +C =
tan @ In(cot @) + e " + C =tan @ In(cotd) + (cotd) ™ +C =
tan @ In(cotd) + tan & + C =tan 8 (In(cotH) + tan &) + C.

The above solution is confirms by the final answer provided by Wolfram
integration tool.
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Note that, somewhere in above argument, we have used the fact that
p?cos’(0) = In(cotd), which is only a restatement of the original polar equation
o’ =sec’(0) In(cotd).

Suggested Exercises

1: Use analytical method, or algebraically verify that for any a > 0 the most
general anti-derivative for the function y = f (X), on an appropriately selected

domain, defined by the implicit relation (x? + y?)? = a?xy is given by

_xy  af(x*-y?)
F(X) = 7 — W +C

where y = f (X) is the function defined by the original implicit relation.

2: Show that for any a # 0 the general anti-derivative for the function y = f (x)
defined by implicit relation y = x tan [ (x? + y?)%], on an appropriately

selected domain will be,
a+1

F(x) == — ——tan™! [(Z)T] + C,

2 2(a+1) X

where y = f (X) is the function defined by the original implicit relation.

A/tan® @

cos? 0 a6

3: Given that n> 2 is a positive integer, integrate, j

tan? @ ntan@ytan’ o
———— dé= +C ]

[Answer, j - = 2
cos” ¢ (n+2)cos” &
4: Use the method of implicit integration to integratej - do =
(asiné@ +bcosh)
do cosé

[Having found the solution as I - - == -
(asin@ +bcosh) a(asind +hbcosh)

conclude that an appropriate substitution to find the original integral would

have been u = coso in the first place. ]

asinéd +bcosé

cos"6dé
(asin@+bcosé)

Now integrate I using the same substitution.

n+2 ’
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5: Show that, for f (x) =3/ XL+ 1+ (x* /27)] +3/x[L— 1+ (X' 127)] ,

_xf(x) JOE + (X))
[ f(x)dx= ) +In( 7100

)+C
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