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 A Method of Implicit Integration 
Ali Astaneh,Ph.D(Lon), Vancouver, BC. 

 
As far as my decades of teaching Calculus is concerned, most likely the following is 
the deepest attempt to integrate a function defined implicitly, even though (just 
like in the case of implicit differentiation) here too the anti-derivatives are 
obtained in terms of both   and   in general. So here first  bring the first (definite 
integral) version of the method, 
 
Theorem 1  [A. Astaneh] Let )(xfy   be a differentiable function defined over 

the open interval ),0(   and let )(gr   be the polar representation of a curve  

)(xfy   upon substitutions )cos(rx   and )sin(ry  . Note that here, if the 

function )(xfy  is defined by an implicit relation, say         , it is then 

understood that )(gr   is the polar version of this implicit relation. Then, for 

any 0a  the following will give an anti-derivative for )(xf , which in general (and 

eventually) will be expressed in terms of both   and  .  
 

     
     

 
 

 

 
        

      
    
 

 

      
    
 

 

  

 
Proof:  In the above diagram, let )(

1
xF  be the anti-derivative for )(xfy   

defining the area under the graph of )(xf over the interval ],[ ax , and let 
x

A  

denote this area. Also, let 


A  denote the polar area enclosed by the origin, the 

polar curve )(gr  , and the polar rays of line defined by equations 
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)/)((tan 1

1
aaf , )/)((tan 1

2
xxf . Then the shaded area in the above 

diagram can be represented by the flowing equal expressions, 
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Using the anti-derivative )(
1

xF , for )(xf , and applying the Fundamental 

Theorem of Calculus upon it to find the area under the curve of )(xfy   over the 

interval ],[ ax , and also using the popular formula  
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to express the , the above equation  (*) can be expressed as 
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Since by assumption 0)(
1

aF , it follows, 
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Therefore  

           
     

 
 

     

 
 

 

 
        

      
    
 

 

      
    
 

 

  

is an anti-derivative for )(xfy  , and the proof is complete. 

 
Given a specific implicit relation, and when the real number   is pre-selected, 
than the above Theorem works like it does in the following four examples of 
different nature. 
 
Example 1:   Let )(xfy   be the function implicitly defined by the relation 

xyxy 2)( 22   ,  0,0  yx .        (1)  

Find an anti-derivative        for the function )(xfy   with initial condition

0)1( F .   

Analytic Solution:  Upon polar substitutions of )cos(x  and )sin(y  in 

(1), the relation is converted to the polar form )cot(22   , or )cot(2  

withthe following polar graph, which at the same time represents graph of  
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relation (1),

 
Now let )(xF  be the anti-derivative for )(xfy   defining the area under its 

graph over the interval ],1[ x , and let 
x

A  denote that area. Also, let 


A  denote the 

polar area between the polar curve, the origin, and between arrays of lines 
4/   and ]/)([tan 1 xxf  .  Then the above figure shows the validity of the 

following relation between the two areas 
x

A  and  


A  , 


A

xfx
A

f
x


2

)( 

2

)1(1
. 

By the Fundamental Theorem of Calculus, and the popular polar formula for the 
polar area


A , the above relation implies, 
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Therefore the solution is 
2

1
)

 2

)(
ln(

2

 
)(

22





y

yxyx
xF , where )(xfy  is the 

function implicitly defined in (1). 
Algebraic Verification of the Solution: It is enough to show that the derivative of 

the right hand side of the equation 
2

1
)

 2

)(
ln(

2

 
)(

22





y

yxyx
xF   is )(xfy  . 

To this end, in the following, when trying to simplify the derivative of the right 
hand side of the equation we will make use the original implicit relation (1). That 
is, when the expression          shows up as the denominator of a fraction we 
will replace it by  . 
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Example 2:   Let )(xfy   be the function implicitly defined by the relation 
22222 )( yxyx   ,  10  x , 0y .    (2)  

Find an anti-derivative for )(xfy   satisfying        .  

 
Analytical solution:  Substituting   cos x   and  sin x  in (2), the Cartesian 

relation is converted into a polar relation as follows  
 

22222 )( yxyx    2cossincos 222224     2cos2  . 

The conditions 10  x  and 0y mean, here we are concerned with the upper 

right part of the Lemniscate curve  2cos2   as seen below,       
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Let 

1

)()(
x

dxxfxF ,       , be the desired anti-derivative for )(xfy   

defining the area under the graph over the interval ]1 ,[x , for  0x  , and let 
x

A  

denote that area under the curve )(xfy   over the interval ]1 ,[x . Also, let  

 )()( 
2

1 2]/)([tan

0

1




dA
xxf




  

be the polar area enclosed by the Lemniscate curve, the x -axis, and the lines 
represented by the polar rays 0  and ]/)([tan 1 xxf .  Then, as seen in the 

diagram, the following relation holds between the two areas 
x

A  and  


A  , 

                                                        
2

)( xfx
AA

x



. 

By the Fundamental Theorem of Calculus the left hand side is just 
)()1( xFFA

x
  . Therefore, also using the polar definite integral formula for the 

area 


A , the above relation can be expressed as 

2

)( 
   )2cos( 

2

1
)()1(

]/)([tan

0

1 xfx
dxFF

xxf

 


 . 

Hence, considering 0)1( F , we have 
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Or,           
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22 xfx
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Therefore the solution is 
)(22

 
)(

22 yx

xyyx
xF


 , where )(xfy  is the function 

implicitly defined in (2). 
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Algebraic Verification of the Solution :  Again, it is enough to show that the 

derivative of the right hand side of 
)(22

 
)(

22 yx

xyyx
xF


  is )(xfy  . To this 

end, this time in our verification when the expression          shows up as a 
denominator of a fraction we will make use the assumed original implicit relation 
(2) and replace it by         . 
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Remark:  Incidentally the implicit relation 22222 )( yxyx   in above Example 2 

can be solved for 0y , but in a not so handsome expression as follows, 

)12(18
2

1 22  xxy . 

Therefore, the above solution to Example (2) implies we have been able to 
explicitly integrate the rather complicated looking integral, 
  

                                       dxxx  )12(18
2

1 22

  ,   10  x ,     

 as Example 2 implies that the solution is, 

C
xfx

xxfxxf
dxxx 



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)(
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 )12(18

2

1
22

22 , 

Where )12(18
2

1
)( 22  xxxf  happens to be the integrand itself. Upon 

substitution of this expression for )(xf , and algebraic simplification, the above 

integral is obtained as, 

C
x

xxxx
dxxx 






)118(2

)318()12(18
  )12(18

2
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22 . 

The author, for one, doesn’t recall any previously known integration technique to 
handle the above explicit integral. Consider this as a side job bonus from the 
method of implicit integration presented in this article. 
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Example 3   Let )(xfy   be the function implicitly defined by the relation 

)(4)4( 22222 yxxyx   ,  60  x , 0y .    (3) 

Find the anti-derivative for )(xfy   satisfying 0)6( F  . 

Analytical solution:  Again, substituting  cos x   and  sin x  in (3), the 

Cartesian relation is converted into a polar relation as follows, 
 

222 4)cos4(          4)cos4( 2        2 cos4   . 

 
Since the case  cos42    implies ))cos(42( )cos(cos  x from 

which the value 6x  will never be obtained for x , the requirement 0)6( F

implies that here we are concerned with the polar equation   cos42    

whose graph is part of the Limacon in the first quadrant curving counter-
clockwise from point )0,6(  to the point )2,0(  on the plane,  as seen below 

 
                                                                                                 
Again, let )(xF  be the anti-derivative for )(xfy   defining the area under its 

graph over the interval ]6 ,[x , and let 
x

A  denote that area. Also, let 


A  denote 

the polar area enclosed by the Lemicon, the x -axis, and the line with the angle of 
inclination ]/)([tan 1 xxf . Then the above figure shows the validity of the 

following relation between the two areas 
x

A  and  


A  , 

2

)( xfx
AA

x



. 

By the Fundamental Theorem of Calculus, and the polar coordinate formula for 


A , the above relation can be expressed as 

 

2

)( 
   )]cos(42[  

2

1
)()6( 2]/)( [tan

0

1 xfx
dxFF

xxf

 


 . 
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Therefore, considering 0)6( F , we have 
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Or,          
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Hence,     

]/)( [tan
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|)]2sin()4sin(3 [ 2
2
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xF



  , 

]
24

)(tan3 [ 2
2

y 
)(

2222

1
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xy
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y

x

yx
xF





  . 

The Algebraic verification of the solution for Example 3 is left to the reader. 
 
Note that, in the analytical solution for the following example the letter   has 
been used instead of .  
 
Example 4:  Find an anti-derivative for the function )(xfy   implicitly defined by  

                 )/(tan)
2

ln( 1

22

xy
yx 


 ,  )0, 2[ 2/ex  , ) 2,0[ 4/e .       (4)                

Note that, the point with coordinates )0, 2( 2/e  is an x -intercept of )(xfy  .  

Analytical Solution:  Let 
x

a

dttfxF )()(
1

 be the area under the graph of )(xf and 

directly above the interval ],[ xa , where 2/ 2 ea   is the x -intercept of )(xf . 

Then by Fundamental Theorem of Calculus )(
1

xF  is an anti-derivative for )(xf . 

Moreover, the coloured area shown in the diagram below can be expressed as 

2

)(
)(

1

xxf
xF  . (Note that for ]1,6[ x  the triangular part of the coloured area 

is 2/)(xxf , because 0x ).            
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On the other hand, with the selection of the polar argument   as 

)/)((tan 1 xxf , we know from the same coloured polar area is simply  

 






]/)( [tan

2

1
)( 

2

1
xxf

dr  , where )(r  is the polar representation of the relation (4), 

in both quadrants I and II, and hence that of the function )(xfy   as well.  

Therefore we have  

                                           
2

)(
)(

1

xxf
xF  =  






]/)( [tan

2

1
)( 

2

1
xxf

dr .           (*)      

Next, it is easy to check that upon polar substitutions  )cos(rx   and 

)sin(ry  , and 222 ryx   in (4) the relation is simplified into       . 

Substituting this in (*) we get, 
 

2

)(
)(

1

xxf
xF  = ]/)( [tan

1]/)( [tan

1

1

]/)( [tan
2 

2

1 xxf

xxf
ee

xxf
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




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











 . 

 

Therefore,  ]/)( [tan

1

1

2

)(
)( xxfe

xxf
xF

   is an anti-derivative for )(xfy  . 

Algebraic verification of the solution:  It is enough to show that the derivative of 

the right hand side of ]/)( [tan

1

1

2

)(
)( xxfe

xxf
xF

   is just )(xf , so here we go 
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)()(' 
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2
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)( 
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d  




  . 

On the other hand, since (4) implies ]/)([tan22 1

2))(( xxfexfx
  , the above right 

hand side is simplifies into  

)())()(' (
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 ]/)([tan 1

2

)( 
)(  , 
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Having observed the efficiency of the method through above examples (as well as 
the exercises I have laid out at the end of the article), it would be desirable also to 
bring the indefinite integral version of Theorem 1 as follows, whose proof is given 
regardless of a graph, and any specific real numbers involved   . 
 
Remark:   Note that my method of Implicit Integration can be interpreted in the 
language of Differential Equations, and I have preferred to explain this in a 
separate article (see article #8 on this same Calculus 2 section of the website).   
 
Theorem  2 [A. Astaneh] :  A function )(xfy   defined by an implicit relation

0),( yxR  on a specific domain is integrable if and only if, when upon 

substitutions )cos()( rx  ,  )sin()( ry   the implicit relation is converted 

into polar form         , the square polar function 22 )( r  is integrable in 

terms of  . Moreover, we have 

        
     

 
 

 

 
          

where          
    

 
   

 
Proof   Assuming        represents the polar version of the implicitly defined 
function        upon popular polar substitutions  )cos()( rx   and 

)sin()( ry   , a normal integral such as the left hand side  dxxf )(  above can 

be first converted into, 

(i)                                     ])2cos(1[
2

1
)()2sin('

2

1

)(sin)()cos()sin(')]sin()cos(')[sin(

)]cos([ )sin()]cos()([ )sin()()(

2
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





dd

ddd

drdrydxdxxf





 







 

Next, an application of the method of integration by parts applied to the first 
integral on the right hand side of (i) ; with )2sin( U and  ddV ' , will show 

that the first integral is the same as 

   )2cos(
2

1
)2sin(

4

1
)()2sin('

2

1 22  dd   .                                  

Therefore   

 dddxxf )]2cos(1[
2

1
 )2cos(

2

1
 )2sin(

4

1
 )( 222    
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     =   dr

xxf
dxxf   2)(

2

1

2

)(
 )(  . (ii)        

The above integral equation (ii) also implies )(xfy   is integrable if and only if 
22 )( r is, and the proof is complete. 

Application 1:  Integrate the function   22 11 xxy  ,   30  x  

(a seemingly unlikely integrable function by any known method ) 
 
Solution:  As the reader can verify that upon substitutions  cos x   and 

 sin x   )cos()( rx   the polar representation of the relation 

22 11 xxy    will be  22 cos2)(  , which happens to be integrable 

with respect to   , so the Theorem applies best. Since from elementary 
trigonometry integration we also know that   
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The theorem implies 
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



 

 

Where 22 11 xxy  , which means, 
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The following application can be considered as a generalization of Application 1. 
 
Application 2 (A two parameter family of integrals):  Let 0, ba , and consider the 

problem of integrating the function 
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222 bxaxay  ,   ax 0  

and recall that, the method of implicit integration simply says if  )(r  is the polar 

representation of the relation 222 bxaxay   , then 

 d
xxf

dxxf   2)(
2

1

2

)(
 )( .       

Since presently the polar representation of the relation 
222 bxaxay   can 

be verified to be  2cos
2

)
2

2()(2 bb
a  , and since 

 

 cossin
2

)
2

2(2sin
4

)
2

2( ]2cos
2

)
2

2[(
bb

a
bb

ad
bb

a  , 

the integral relation (1) implies 
 

C
x

yb
a

yx

bxy

C
yx

bxy

x

yb
a

xy
C

bb
a

xy

d
xy

dxydxbxaxa



















 tan)
4

(]
)(2

1[
2

]
)(2

 tan)
2

2[(
2

1

2
]cossin

2
)

2
2[(

2

1

2

2

1

2
 

1

22

22

1

2222





 

where 
222 bxaxay  , which means, 

 

C
x

bxaxab
a

bxaa

bbxaxax

dxbxaxa
















 tan)
4

(]
)(2

1[
2

222

1

22

222

222

Application 3 (El Ganzo 2016):  Integrate the function 

2)( 22/3  xxxxfy . 

( Another function unlikely to be integrated by other techniques) 
 
Solution:  This time the polar representation of the function can be written as  

 42 tan
2

1
)(  , and therefore the Theorem implies 
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C
x

y

x

y

x

yxy

C
x

y

x

y

x

yxy

C
xy

d
xy

d
xy

dxydxxxx

















 tan
4

1

1242

]
3

 [tan
4

1

2

]tan
3

1
tan[

4

1

2
 tan

4

1

2

2

1

2
  2

1

3

3

3

3

1

34

222/3





 

 

Where 222/3  xxxy .  That is, 

 

Cxxx

xxxxxxxxxxx

dxxxx











)2(tan
4

1

2)2(
12

1
2

4

1
2

2

1

 2

22/11

222/322/122/5

22/3

. 

Note that, in above, to evaluate  d tan4

 , upon substitution tanu , we have 

 duddu )1()tan1( 22  , 
21 u

du
d


 , and therefore 

.tan
3

tantan
3

1

tan
3

1
]

1

1
1[

1
 tan

1

3

3

3

13

2

2

2

4

4

x

y

x

y

x

y

uuudu
u

udu
u

u
d













 





 

 
Application 4:  Consider the problem of integrating the function 

22)( xaxf  ,   ax  . 

This is usually accomplished by the conventional substitutions           or 

          , but our Theorem’s integration formula offers a more clean cut that any of 

those substitutions. Consider the polar representation         of the circle 

representing 22 xay   , then  d
xxf

dxxf   2)(
2

1

2

)(
 )(  implies      
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.cos
22

                  

2

1

22

1

2
                  

)(
2

1

2

1

222

2

22

2

22

2

22

22

C
a

xaxax

Ca
xax

da
xax

dr
xax

dxxa





























, 

The above answer may seem a bit different from the common solution seen for the 

indefinite integral dxxa  22
 in literature, as 

.sin
22

1

222

22 C
a

xaxax
dxxa 


 

  

But that is only because of the  identity 2/cossin 11   XX  ,  the two answers are 
actually the same. 

 
 
Application 5:  (A first sequence of implicitely integrable functions)   
 
Let ,...3,2n  be a positive integer, and consider the problem of integrating the 

function 

21

2

xxy n

n

  ,   x1  

and recall that, the method of implicit integration simply says if  )(r  is the 

polar representation of the relation 21

2

xxy n

n

   , then 

 d
xxf

dxxf   2)(
2

1

2

)(
 )( .      (1) 

Since presently the polar representation of the relation 21

2

xxy n

n

   can be 

verified to be  nsec , and since a routine substitution tanu  to integrate 

the polar function  n22 sec  implies 

 12
1

0

2
1

0

122  tan
   

1
 

12

1
  

   

1
  )1( sec 











  






 










 
 k

n

k

k
n

k

nn

k

n

k
duu

k

n
duud , 

 the integral relation (1) will imply, 
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C
x

y

k

n

k

xy

C
k

n

k

xy
d

xy
dxydxxx

k
n

k

k
n

k

n

n








 











 




















 ) ( 
   

1
 

12

1
 

2

1

2

 tan
   

1
 

12

1
 

2

1

2
)(

2

1

2
 

12
1

0

12
1

0

221

2



 

where 21

2

xxy n

n

  , which means, 

C] )(  
   

1
 

12

1
 [ 

2

1 12k

21

2

1

0

21

2

21

2











 


 





 
x

xx

k

n

k
xxxdxxx

n

n

n

k

n

n

n

n

. 

For example: , when 4n , we have 

C
x

xx

x

xx

x

xx

x

xx
xxx

x

xx

kk
xxxdxxx k

k




























 





])(
7

1
)(

5

3
)([ 

2

1

C] )(  
3

 
12

1
 [ 

2

1

7

23

8

5

23

8

3

23

8

23

8

23

8

12

23

8

3

0

23

8

23

8

 

 
 
Application 6:  (A second sequence of implicitly integrable functions)   
 
Let ,...2,1n  be a positive integer, and consider the problem of integrating the 

function 

22

2

xxy n

n

  ,   x1  

and recall that, the method of implicit integration simply says if  )(r  is the 

polar representation of the relation 22

2

xxy n

n

   , then 

 d
xxf

dxxf   2)(
2

1

2

)(
 )( .      (1) 

Since presently the polar representation of the relation 22

2

xxy n

n

   can be 

verified to be  ncos2  , the integral relation (1) will imply, 

   d
xy

d
xy

dxydxxx nn

n

 cos
2

1

2
)(

2

1

2
 222

2

 

For example: (a) When 1n , we have  cos2   and 
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C
yx

yxy
C

xy
d

xy
dxxx 


  22

23

2

2
 

2
sin

2

1
 

2
 cos

2

1
 

2
  

where 23

2

xxy  , which means, 

C

x

xxx
C

x

xxxxx
dxxx 










3

1

23

2

3

4

3

1

23

2

23

2

23

2

2

)1(

2

 
2

. 

(b)  When 3n , we have )cos33(cos
4

1
cos32    and 

C
yx

x

yx

yxy
C

xy

xy
C

xy

C
xy

C
xy

d
xy

d
xy

dxxx













 

]
)(

2[
6

 
2

]cos2[sin
6

1
 

2

]sin
3

1
1[sin

2

1
 

2
]sin

3

1
[sin

2

1
 

2

]sin3)sin4sin3(
3

1
[

8

1
 

2
]sin33sin

3

1
[

8

1
 

2

 )cos33(cos
8

1
 

2
 cos

2

1
 

2

22

2

22

2

23

3

325

6









 

where 25

6

xxy  , which means, 

C
xxxxxx

dxxx 









6

1

3

1
 

2

5

4

5

4

5

4

25

6

25

6

 

Application 7:  (A third sequence of implicitly integrable functions)   
 
Let ,...2,1,0n  be a positive integer, and consider the problem of integrating the 

function 

112

4

 nxxy ,    

and recall that, the method of implicit integration simply says if  )(r  is the 

polar representation of the relation 112

4

 nxxy  , then 

 d
xxf

dxxf   2)(
2

1

2

)(
 )( .      (1) 

Since presently the polar representation of the relation 112

4

 nxxy  can be 

verified to be  122 sec  n ,  the integral relation (1) will imply, 
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C sec
2

1

2
)(

2

1

2
  1 12212

4

 
  d

xy
d

xy
dxydxxx nn . 

For example , (a) When 0n , we have 
x

x
xxxxy

4

224 1
1


   and

 sec2   , therefore the integral relation (1) implies, 

C
x

y

x

yxxy

C
xy

d
xy

dx
x

x











)ln(
2

1
 

2

)tanln(sec
2

1
 

2
 sec

2

1
 

2
 

1

22

4



 

where 
x

x
y

41
 . Since  

xx

x
xyx

11
2

4

222 


   we have, 

Cxxx

C
x

x

x

x
dx

x

x














)]ln()11ln(1[
2

1

)
11

ln(
2

1
 

2

1
 

1

244

2

4

2

44

 

(b), when 1n , we have 14  xxy ,  

  C
xy

d
xy

dxxx ] )tan(sec lntansec [ 
2

1
 

2

1
 

2
 sec

2

1
 

2
 1 34 

 C
x

y

x

yx

x

yyxxy






 ] )( ln

)(
 [ 

4

1
 

2

22

2

22

 

where 14  xxy , which means, 

Cxxxx

Cxxxxxxdxxx





] )1( ln   1 [
4

1

] )1( ln  1 12 [
4

1
 1

4242

4242424

 

So far, in dealing with the method of implicit integration we have been exclusively 
concerned with finding solutions to challenging Cartesian integrals by converting 
them into manageable trigonometric integrals according to the integration 
formula , 

 d
xy

ydx   2)(
2

1

2
 .         

A second point of view would be that the above integral relation can be expressed 

in a “reverse” form, that is the polar integral  d
2)(  on the right hand side can 
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be expressed in terms of the Cartesian integral  ydx  on the left. More precisely, 

upon substitutions )cos(x  and )sin(y on the right hand side of the 

above integral formula, and necessary simplifications, the formula can be 
expressed in the form  

  ydxd 2)2sin()(
2

1
)( 22  .       

This reversed form can be used to find some challenging trigonometric integrals 

by reducing them manageable Cartesian integrals  ydx . A typical example is, 

 
Aplication 8: Consider the problem of integrating trigonometric function 

)ln(cot )(sec2  , and set  )ln(cot  )(sec22   . Then, upon substitution of  

)ln(cot  )(sec2   for 2)(  on both sides of (2) we can get, 

  ydxd 2)2sin()ln(cot  sec
2

1
)ln(cot sec 22  .      

 It is therefore enough to find the Cartesian representation )(xfy   of the polar 

equation )ln(cot  )(sec22    first, and then integrate  ydx  it in the right hand 

side  and then use the relation )cos(x to get the desired solution. 

 

In order to find the Cartesian form of the equation )ln(cot  )(sec22    , we 

only need to substitute 222 yx  , 
2

22

2sec
x

yx 
 , and 

y

x
cot  in the 

relation. Then we get  
y

x

x

yx
yx ln  

2

22

22 
  which can be simplified into 

y

x
x ln 2  . This in turn implies 

2xxey  , for which 
2

2

1 xeydx  . Hence , 

.)tan)ln(cot ( tantan)ln(cot tan

)(cot)ln(cot tan)ln(cot tan

)ln(cot tan)ln(cot  tan

2)2sin()ln(cot  sec
2

1
)ln(cot sec

1)ln(cot

22

222

2

CC

CCe

CeCe

dxxed

cocx

x




























 

 
The above solution is confirms by the final answer provided by Wolfram 
integration tool. 
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Note that, somewhere in above argument, we have used the fact that 

)ln(cot  )(cos22   , which is only a restatement of the original polar equation

)ln(cot  )(sec22   . 

Suggested Exercises 
1:  Use analytical method, or algebraically verify that for any     the most 
general anti-derivative for the function )(xfy  , on an appropriately selected 

domain, defined by the implicit relation                  is given by  
 

     
  

 
 

         

        
 +C 

 where )(xfy   is the function defined by the original implicit relation. 

 
2:  Show that for any     the general anti-derivative for the function )(xfy   

defined by implicit relation                      , on an appropriately 
selected domain will be,        

                                      
  

 
   

 

      
        

 

 
 

   

 
    , 

where )(xfy   is the function defined by the original implicit relation. 

 

3:  Given that 2n  is a positive integer, integrate,   



d

n

  
cos 

 tan
 

2

2

. 

    [Answer ,  C
n

n
d

nn

  
cos)2(

 tan tan 
  

cos 

 tan
 

2

2

2

2













 ] 

4:  Use the method of implicit integration to integrate 
 2)cos sin ( 



ba

d
 . 

[Having found the solution as C
baaba

d








)cos sin ( 

cos

)cos sin ( 2 






, 

      conclude that an appropriate substitution to find the original integral would  

      have been 




cos sin 

cos

ba
u


   in the first place. ] 

      Now integrate   2)cos sin (

 cos
n

n

ba

d




, using the same substitution. 
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5:  Show that, for 3 43 4 ])27/(11[ ])27/(11[ )( xxxxxf   ,  

C
xf

xfxxfx
dxxf 


 )

)( 2

))((
ln(

2

)( 
)(

22

 

 
 

  

 
 
 
 
 
 
 
 
 
 
 
 


