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The Exact Count for Cardinality “μ” in Gauss's Lemma; and its Analytical 

Geometric interpretation 

Ali Astaneh,PhD (Lon). Vancouver BC, Canada 

 
For completeness, let us first recall an equivalent version of the lemma in 
the title from elementary number theory. 
 
Gauss’s Lemma:   Let 𝑝 be an odd prime number, and 𝑛 an integer 
satisfying  1 ≤ 𝑛 ≤ 𝑝 − 1. Then (

𝑛

𝑝
) = (−1)𝜇, where 𝜇 is the cardinality  

𝜇 = |𝑛𝑃 ∩ 𝑁|,  𝑃 = {1, 2, … ,
𝑝−1

2
}  and 𝑁 = −𝑃,   

Among other consequences, an immediate useful conclusion of the Lemma being 

that; if the Legendre value (
𝑛

𝑝
)

𝜇
= 1 the integer n is a quadratic residue 𝑚𝑜𝑑(𝑝), 

whereas when  (
𝑛

𝑝
)

𝜇
= −1, n would be a non-quadratic residue 𝑚𝑜𝑑(𝑝). 

 

Before we bring the main Theorem of the article I would like to point out that, given 

an odd prime number 𝑝, I originally used a different method than the one described in 

this article to classify quadratic/non-quadratic residues 𝑚𝑜𝑑(𝑝) for all factors of the 

specific integers (𝑝 − 1) , 
𝑝−1

2
, 

𝑝+1

2
, and (𝑝 + 1); and the full description of the 

original  method is explored in details, in Article 3 of the Number Theory section of 

my website www.mathwithdrastaneh.com . However, I later came up with a notable 

inductive method (seen in the proof of the main Theorem here) to classify all 

quadratic/non-quadratic integers 𝑚𝑜𝑑(𝑝) for all integers 1 ≤ 𝑛 ≤ 𝑝 − 1, and thereby 

formulating an exact count for the cardinality 𝜇 in the assertion (
𝑛

𝑝
) = (−1)𝜇 of 

Gauss’s Lemma; as laid out in the two assertions of the Theorem. The formulas 

presented for 𝜇 here turn out to be significant, not only because they imply all the 

previous assertions about factors of the specific integers (𝑝 − 1) , 
𝑝−1

2
, 

𝑝+1

2
, and 

(𝑝 + 1) mentioned earlier (see proof of Corollary 1); but more significantly the 

formulas can technically be used to decide whether any integer 
1 ≤ 𝑛 ≤ 𝑝 − 1 (and thereby any other integer 𝑘𝑝 + 𝑛 𝑚𝑜𝑑(𝑝), 𝑘 ∈ ℕ, 𝑛 ≠ 𝑝) is a 

quadratic or non-quadratic residue 𝑚𝑜𝑑(𝑝). 

 

Given any integer 1 ≤ 𝑛 ≤ 𝑝 − 1 , as 𝑛 may have different parity, the two similar 

formulas in the two parts of the Theorem together present an unconventional 

arithmetic method to find the Legendre value (
𝑛

𝑝
) for any odd prime 𝑝, and any given 

𝑛 ≠ 𝑝. As far as my own research is concerned there aren’t any record of such 

formula(s) for the exact value of 𝜇 in Gauss Lemma in literature; certainly not in any 

classical number theory textbooks, nor in the number theory resources on line. Indeed, 

the closest assertion one can find would be Theorem 9.7 in Tom Apostol’s classical 

textbook “Introduction to Analytic Number Theory” where a different approach is 

used to present a formula to determine only the parity of the cardinality number 𝜇; 

which of course serves the purpose for concluding the Quadratic Law of Reciprocity, 

as seen in his follow up Theorem 9.8 in the text. According to Apostol’s comments 

following Theorem 9.8, the proof presented in his text  is one of Gauss’s own many 

http://www.mathwithdrastaneh.com/
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original approaches to prove Quadratic Law of Reciprcity One might guess, most 

likely, since Gauss knew only the knowledge about parity of the cardinality 

𝜇 = |𝑛𝑃 ∩ 𝑁| would suffice to conclude Quadratic Law of Reciprocity, he didn’t 

bother to formulate an exact count for 𝜇, whereas the Theorem in this article provides 

the exact count for 𝜇. 

Corollary 2 in the article shows how quick Legendre values such as  (
2

𝑝
), (

3

𝑝
), (

5

79
) 

are obtained by using the formulas displayed for 𝜇 in the Theorem, and the Example1 

following Corollary 2 finds (
𝑛

𝑝
) for several higher integers 𝑛 . It should be obvious to 

the reader familiar with the subject that, given an odd prime integer 𝑝, presently a 

more conventional classification of an integer numbers 𝑛 as quadratic/non-quadratic 

residue is possible by applying Gauss's Lemma usually combined with the Law of 

Reciprocity and other properties of Legendre values such as multiplicative property 

and so on. However, given an odd prime 𝑝 and any integer 1≤ 𝑛 ≤ 𝑝 − 1, here the 

two formulas laid out in the Theorem will find the exact count for 𝜇 = |𝑛𝑃 ∩ 𝑁|, 

where 𝑃 = {1, 2, … ,
𝑝−1

2
}  and 𝑁 = −𝑃,  and hence one can decide about 

quadratic/non-quadratic residuality of any number 𝑛 even before the Law of 

Reciprocity is introduced. Also, as for their practical classroom applications, the two 

formulas allow students to find Legendre values  (
𝑛

𝑝
) in an unconventional way 

compared to the one commonly used at the present time. In number theory textbooks. 

So, here we have another advantage of knowing the following Theorem. 

 

Theorem (Astaneh):  Let 𝑝 be an odd prime number, 1 ≤𝑛 ≤ (𝑝 − 1),  

𝑃 = {1, 2, … ,
𝑝−1

2
}, 𝑁 = −𝑃, and   𝜇 = |𝑛𝑃 ∩ 𝑁|.  Then in the assertion (

𝑛

𝑝
) = (−1)𝜇 

of the popular “Gauss’s Lemma” is given by, 

(A) If 𝑛 > 1  is odd, then                𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋)

𝑛−1

2

𝑖=1 .           (1) 

 

(B) If 𝑛 is even, then               𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋)

𝑛

2

𝑖=1
.                     (2) 

 
Here, for any real number 𝑥, the notation ⌊𝑥⌋ means the greatest integer ⌊𝑥⌋  ≤ 𝑥. 
 

Before presenting proof of the Theorem, we first show that both Theorems 1&2 in 

Article 3 of Number Thery section in my website can now be concluded as 

Corollaries of the above Theorem. Since in that Article 3 part (B) and (C) of both 

Theorems 1&2 in that article are concluded from corresponding part (A), in the 

following Corollary I will only conclude parts (A) for those Theorems. Then the 

follow up Corollary 2 will show how quickly integers 𝑛 = 2, and 𝑛 = 3, and even 

𝑛 = 5 can be classified as quadratic/non-quadratic residues 𝑚𝑜𝑑(𝑝), for any odd 

prime 𝑝 in a new unconventional in contrast with the normal methods in literature. 

 

Corollary 1: Let 𝑝 be an odd prime number and let 𝑛 be an odd integer satisfying  
  1 <𝑛 < (𝑝 − 1)/2 . Then     

(a) If 𝑛 is a factor of  
(𝑝−1)

2
,  or equivalently of (𝑝 − 1), then 𝜇 =

(𝑛−1)(𝑝−1)

4𝑛
. 

(b) If 𝑛 is a factor of 
(𝑝+1)

2
, or equivalently of (𝑝 + 1) , then 𝜇 =

(𝑛−1)(𝑝+1)

4𝑛
. 
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Proof: (a) If 𝑛 is an odd factor of  
(𝑝−1)

2
 then  

(𝑝−1)

2
= 𝑚𝑛 for some positive integer 

𝑚. Since 𝑛 is odd, part (A) of Theorem implies, 

𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋) = ∑ (⌊

𝑖(𝑝−1)+𝑖

𝑛
⌋ − ⌊

(2𝑖−1)(𝑝−1)+2𝑖−1

2𝑛
⌋) =

(𝑛−1)

2

𝑖=1

(𝑛−1)

2

𝑖=1

∑ (⌊
𝑖(𝑝−1)

𝑛
+

𝑖

𝑛
⌋ − ⌊

(2𝑖−1)(𝑝−1)

2𝑛
+

2𝑖−1

2𝑛
⌋) = ∑ (2𝑖𝑚 + ⌊

𝑖

𝑛
⌋ − (2𝑖 − 1)𝑚 +

(𝑛−1)

2
𝑖=1

(𝑛−1)

2
𝑖=1

⌊
2𝑖−1

2𝑛
⌋) = ∑ (2𝑖𝑚 + 0 − (2𝑖 − 1)𝑚 − 0) =  ∑ (𝑚) =  

(𝑛−1)𝑚

2

(𝑛−1)

2
𝑖=1 =

(𝑛−1)(2𝑝−1)

4𝑛

(𝑛−1)

2
𝑖=1 .              

(b) If 𝑛 is an odd factor of  
(𝑝+1)

2
  then 

(𝑝+1)

2
= 𝑚𝑛, for some positive integer 𝑚. Since 

𝑛 is odd, again part (A) of Theorem implies 

𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋) =

(𝑛−1)

2
𝑖=1

∑ (⌊
𝑖(𝑝+1)

𝑛
−

𝑖

𝑛
⌋ − ⌊

(2𝑖−1)(𝑝+1)

2𝑛
−

2𝑖−1

2𝑛
⌋) =

(𝑛−1)

2
𝑖=1

∑ (⌊2𝑖𝑚 +
−𝑖

𝑛
⌋ − ⌊(2𝑖 − 1)𝑚 −

2𝑖−1

2𝑛
⌋) = ∑ (2𝑖𝑚 + (−1) + (2𝑖 − 1)𝑚 −

(𝑛−1)

2
𝑖=1

(𝑛−1)

2
𝑖=1

(−1)) = ∑ (𝑚) =  
(𝑛−1)𝑚

2
=

(𝑛−1)(𝑝+1)

4𝑛

(𝑛−1)

2

𝑖=1
.               

 

Corollary 2: For any odd prime number 𝑝, parts (B) and (A) of the Theorem classify 

𝑛 = 2 and 𝑛 = 3 as quadratic/non-quadratic residues 𝑚𝑜𝑑(𝑝) in a way apparently not 

recorded in literature. Also, part (c) of the Corollary shows how quickly you can 

decide classifying 𝑛 = 5  as well(!) 

(a)  (
𝟐

𝒑
) = (−1)(⌊

𝑝

2
⌋−⌊

𝑝

4
⌋)

. For example, since ⌊
79

2
⌋ − ⌊

79

4
⌋ = 30,92 ≡ 2𝑚𝑜𝑑(79).   

(b) (
𝟑

𝒑
) = (−1)(⌊

𝑝

3
⌋−⌊

𝑝

6
⌋)

. For example, since ⌊
19

3
⌋ − ⌊

19

6
⌋ = 3, 3 ∉ 𝑄19 

(c) (
𝟓

𝟕𝟗
) = (−1)(⌊

𝑝

5
⌋−⌊

𝑝

10
⌋+⌊

2𝑝

5
⌋−⌊

3𝑝

10
⌋) = (−1)(⌊

79

5
⌋−⌊

79

10
⌋+⌊

158

5
⌋−⌊

237

10
⌋) = (−1)10 = 1. 

And that is why we have, 202 ≡ 5 𝑚𝑜𝑑(79).   

 

Also, before we bring the proof of the above main Theorem, let us bring some more 

examples to see how formulas (1) and (2) of the Theorem work in practice. 

Example 1 (a) For 𝑝 = 91 and 𝑛 = 11, since 
(𝑛−1)

2
= 5, part (A) of Theorem implies 

𝜇 =  ∑ (⌊
91𝑖

11
⌋ − ⌊

91(2𝑖 − 1)

22
⌋)   

5

𝑖=1

= 4 + 4 + 4 + 5 + 4 = 21 

Hence 11 is a non-quadratic residue 𝑚𝑜𝑑(91). 

(b) For 𝑝 = 59 and 𝑛 = 7, again since 
(𝑛−1)

2
= 3, again from part (A) we get 

𝜇 =  ∑ (⌊
59𝑖

7
⌋ − ⌊

59(2𝑖 − 1)

14
⌋)

3

𝑖=1

= 4 + 4 + 4 = 12 

Hence, 7 ∈ 𝑄59; and indeed 192 ≡ 7 𝑚𝑜𝑑(59). 

 

(c) For 𝑝 = 47 and 𝑛 = 14, since 𝑛 is even and 
𝑛

2
= 7 part (B) implies,  

𝜇 = ∑ (⌊
47𝑗

14
⌋ − ⌊

47(2𝑗 − 1)

28
⌋)

7

𝑗=1

= 2 + 1 + 2 + 2 + 1 + 2 + 2 = 12 

Hence, 14 ∈ 𝑄47; and indeed 222 ≡ 14 𝑚𝑜𝑑(47). 
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(d) For 𝑝 = 37 and 𝑛 = 10, since 𝑛 is even and 
𝑛

2
= 5 part (B) implies,  

𝜇 = ∑ (⌊
37𝑗

10
⌋ − ⌊

37(2𝑗 − 1)

20
⌋)

5

𝑗=1

= 2 + 2 + 2 + 2 + 2 = 10 

Hence, 10 ∈ 𝑄37; and indeed 112 ≡ 10 𝑚𝑜𝑑(37). 

 

(e) For 𝑝 = 31 and 𝑛 = 17, since 
(𝑛−1)

2
= 8, again from part (A) we get, 

𝜇 = ∑ (⌊
31𝑖

17
⌋ − ⌊

31(2𝑖 − 1)

34
⌋)

8

𝑖=1

= 1 + 1 + 1 + 1 + 1 + 0 + 1 + 1 = 7 

Therefor 17 is a non-quadratic residue 𝑚𝑜𝑑(31).  

 

Proof of the Theorem: To begin with, let 0 < 𝜌1<
𝑝

2
 be the greatest integer satisfying 

𝜌1𝑛 ∈ 𝑃, or else choose 𝜌1 = 0 if such greatest integer doesn’t exist. 

Then 𝜌1 is the greatest integer satisfying 0 ≤ 𝜌1 ⋖
𝑝

2𝑛
, and therefore 𝜌1 = ⌊

𝑝

2𝑛
⌋. Next, 

let 0 < 𝜇1<
𝑝

2
 be the greatest integer satisfying 𝜌1𝑛 + 𝜇1𝑛 < 𝑝 (that is,  

 𝜌1𝑛 + 𝜇
1

𝑛 ∈ {
𝑝+1

2
,

𝑝+3

2
, … , (𝑝 − 1)} ), or else choose 𝜇

1
= 0 if such greatest  integer 

doesn’t exist. Then  𝜇
1

<
𝑝

𝑛
− 𝜌1, and therefore  𝜇

1
= ⌊

𝑝

𝑛
⌋ − 𝜌1. Now, let 

0 < 𝜌2<
𝑝

2
  be the greatest integer satisfying 𝜌1𝑛 + 𝜇

1
𝑛 + 𝜌2𝑛 <

3𝑝

2
, or else choose 

𝜌2 = 0 if such greatest integer doesn’t exist. Then 𝜌1 + 𝜇
1

+ 𝜌2 <
3𝑝

2𝑛
, and 

considering that 𝜌1 + 𝜇
1

= ⌊
𝑝

𝑛
⌋ we have 𝜌2 <

3𝑝

2𝑛
− ⌊

𝑝

𝑛
⌋, and therefor 𝜌2 = ⌊

3𝑝

2𝑛
⌋ − ⌊

𝑝

𝑛
⌋. 

Next let 0 < 𝜇2<
𝑝

2
   be the greatest integer satisfying 𝜌1𝑛 + 𝜇1𝑛 + 𝜌2𝑛 + 𝜇2𝑛 < 2𝑝, 

or else choose 𝜇
2

= 0 if such greatest integer doesn’t exist. Again, considering that 

we have 𝜌1 + 𝜇
1

+ 𝜌2 = ⌊
3𝑝

2𝑛
⌋, we get 

 𝜇
2

< ⌊
2𝑝

𝑛
⌋ − ⌊

3𝑝

2𝑛
⌋, and therefore 𝜇

2
= ⌊

2𝑝

𝑛
⌋ − ⌊

3𝑝

2𝑛
⌋.  

Again, let 0 < 𝜌3<
𝑝

2
   be the greatest integer satisfying 𝜌1𝑛 + 𝜇

1
𝑛 + 𝜌2𝑛 + 𝜇

2
𝑛 +

𝜌3𝑛 <
5𝑝

2
, or else choose 𝜌3 = 0 if such greatest integer doesn’t exist. Again since 

𝜌1 + 𝜇
1

+ 𝜌2 + 𝜇
2

= ⌊
2𝑝

𝑛
⌋, it follows 𝜌3 <

5𝑝

2𝑛
−⌊

2𝑝

𝑛
⌋, and therefore 𝜌3 = ⌊

5𝑝

2𝑛
⌋−⌊

2𝑝

𝑛
⌋. 

And finally let 0 < 𝜇3<
𝑝

2
 be the greatest integer satisfying 𝜌1𝑛 + 𝜇1𝑛 + 𝜌2𝑛 +

𝜇2𝑛 + 𝜌3𝑛 + 𝜇3𝑛 < 3𝑝, or else choose 𝜇
3

= 0 if such greatest integer doesn’t exist. 

Again considering that 𝜌1 + 𝜇
1

+ 𝜌2 + 𝜇
2

+ 𝜌3 =⌊
5𝑝

2𝑛
⌋, we get 𝜇

3
< ⌊

3𝑝

𝑛
⌋ − ⌊

5𝑝

2𝑛
⌋, and 

hence 𝜇
3

= ⌊
3𝑝

𝑛
⌋ − ⌊

5𝑝

2𝑛
⌋.  We now make a list of the 𝜌𝑖’s and 𝜇

𝑖
’s we have obtained to 

conclude inductive formulas for 𝜌𝑖’s and 𝜇
𝑖
’s,  

                          𝜌1 = ⌊
𝑝

2𝑛
⌋,                 𝜌2 = ⌊

3𝑝

2𝑛
⌋ − ⌊

𝑝

𝑛
⌋,             𝜌3 = ⌊

5𝑝

2𝑛
⌋−⌊

2𝑝

𝑛
⌋. 

                          𝜇
1

= ⌊
𝑝

𝑛
⌋ − ⌊

𝑝

2𝑛
⌋ ,      𝜇

2
= ⌊

2𝑝

𝑛
⌋ − ⌊

3𝑝

2𝑛
⌋,           𝜇

3
= ⌊

3𝑝

𝑛
⌋ − ⌊

5𝑝

2𝑛
⌋. 

It is now an straightforward inductive practice to conclude that for any index 𝑖,  

                                                     𝜌𝑖 = ⌊
(2𝑖−1)𝑝

2𝑛
⌋−⌊

(𝑖−1)𝑝

𝑛
⌋.          (i) 

                                                     𝜇
𝑖

= ⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋.              (ii) 
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                                                     𝜌𝑖 + 𝜇
𝑖

= ⌊
𝑖𝑝

𝑛
⌋−⌊

(𝑖−1)𝑝

𝑛
⌋.        (iii) 

While relations (i) - (iii) together might have an application to present yet another 

already abundant proof for the Quadratic Law of Reciprocity (which isn’t of course 

our present concern), we only need relation (ii) to conclude the Theorem by finding 

out exactly how many of those 𝜇
𝑖
’s we need to add up to obtain the precise count of 

the cardinality 𝜇 used in Gauss’s Lemma. To this end, let 𝐾 be the positive integer 

satisfying 𝐾𝑝 −
𝑝

2
<

(𝑝−1)𝑛

2
< 𝐾𝑝 +

𝑝

2
.  Then since 

(𝑝−1)𝑛

2
 is the last integer in the set 

𝑛𝑃, by the original constructions of the 𝜌𝑖’s and 𝜇
𝑖
’s it should be clear that 𝜇

𝐾
 is will 

be the last one we need to add up to the previous 𝜇
𝑖
’s in order to obtain 𝜇. That is,  

                                                     𝜇 =   𝜇
1

+ 𝜇
2

+ ⋯ + 𝜇
𝐾

. 

Therefore,  

𝜇 =  ∑ 𝜇𝑖

𝐾

𝑖=1

= ∑ ⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖 − 1)𝑝

2𝑛
⌋

𝐾

𝑖=1

  

In order to find the integer 𝐾 we consider that 𝐾𝑝 −
𝑝

2
<

(𝑝−1)𝑛

2
< 𝐾𝑝 +

𝑝

2
 implies  

 𝐾 <
𝑛(𝑝−1)

2𝑝
+

1

2
< 𝐾 + 1, and therefore  𝐾 = ⌊

(𝑝−1)𝑛

2𝑝
+

1

2
⌋. Next to find the exact 

integer 𝐾 we consider two cases as for parity of the integer 𝑛 as follows. 

 

(A) If 𝑛 is odd, we first consider that  
 𝑛 < 2𝑝  →   𝑛𝑝 + 𝑛 < 𝑛𝑝 + 2𝑝  →   𝑛𝑝 − 𝑝 < 𝑛𝑝 − 𝑛 + 𝑝   →  

→   (𝑛 − 1)𝑝 < 𝑛(𝑝 − 1) + 𝑝   →  
(𝑛−1)

2
< 

𝑛(𝑝−1)

2𝑝
+

1

2
<

𝑛

2
 +

1

2
=

𝑛+1

2
, 

Hence  
(𝑛−1)

2
< 

𝑛(𝑝−1)

2𝑝
+

1

2
<

𝑛+1

2
, and since 

(𝑛−1)

2
 and 

𝑛+1

2
 are consecutive integers it 

follows 𝐾 = ⌊
(𝑝−1)𝑛

2𝑝
+

1

2
⌋ =

𝑛−1

2
. This concludes part (A) of the Theorem. 

 

(B) If 𝑛 is even, set 𝑛 = 2𝑙, where 𝑙 is another integer. This time we first consider that 

𝑛 = 2𝑙 < 𝑝  →    
𝑙

𝑝
 <

1

2
   →    0 <  

1

2
− 

𝑙

𝑝
       →    𝑙 < 𝑙 +

1

2
− 

𝑙

𝑝
        

→      𝑙 < 𝑙 − 
𝑙

𝑝
+

1

2
=

𝑙(𝑝−1)

𝑝
+

1

2
= 

𝑛(𝑝−1)

2𝑝
+

𝟏

𝟐
 <

𝑛

2
 +

1

2
=

𝑛+1

2
= 𝑙 +

1

2
  

Therefore 𝑙 < 
𝑛(𝑝−1)

2𝑝
+

𝟏

𝟐
 < 𝑙 +

1

2
 , and 𝐾 = 𝑙 =

𝑛

2
. Hence part (B) is also settled, and 

the proof of the Theorem is complete. 

 

The following is an application of the relations (i) and iii) that were automatically 
obtained in the process of the proof of the Theorem but actually played no role in 

the proof, as a Corollary regarding the status of the integer 
𝑛(𝑝−1)

2
 in set 𝑛𝑃.  

 

Corollary 3: Let 𝑝 be an odd prime number, 1 <𝑛 ≤ (𝑝 − 1),  

𝑃 = {1, 2, … ,
𝑝−1

2
}, 𝑁 = −𝑃. And let 𝜇 = |𝑛𝑃 ∩ 𝑁| as the exact count obtained in 

the two parts of the Theorem. Regarding the last integer 
𝑛(𝑝−1)

2
∈ 𝑛𝑃 we have,  

(a) If 𝑛 is odd, then 
𝑛(𝑝−1)

2
≡ 𝑙 𝑚𝑜𝑑(𝑝) for some 𝑙 ∈ 𝑃. That is, the sequence 

𝜌1, 𝜇
1

, 𝜌2, 𝜇
2

, … of non-negative numbers constructed in proof of the 

Theorem ends with 𝜌𝑛+1

2

.  
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(b) If 𝑛 is even, then 
𝑛(𝑝−1)

2
≡ 𝑙 𝑚𝑜𝑑(𝑝) for some 𝑙 ∈ 𝑁. That is, the sequence 

𝜌1, 𝜇
1

, 𝜌2, 𝜇
2

, … of non-negative numbers constructed in proof of the 

Theorem ends with with 𝜇𝑛

2
.  

Proof: (a) If 𝑛 > 1 is odd, then, by relation (iii) in the proof of the Theorem, 

 ∑ (𝜇
𝑖

+ 𝜌𝑖) = ∑ (⌊
𝑖𝑝

𝑛
⌋−⌊

(𝑖−1)𝑝

𝑛
⌋) = ⌊

𝑝

𝑛
⌋− 0 +⌊

2𝑝

𝑛
⌋ − ⌊

𝑝

𝑛
⌋ + ⋯ = ⌊

(𝑛−1)𝑝

2𝑛
⌋ 

(𝑛−1)

2
𝑖=1

(𝑛−1)

2
𝑖=1  

because the above sigma is telescopic.  

On the other hand the relation (i) in the proof of the Theorem implies, 
𝜌𝑛+1

2
= ⌊

𝑝

2
⌋−.⌊

(𝑛−1)𝑝

2𝑛
⌋
. Therefore 

∑ (𝜇
𝑖

+ 𝜌𝑖) + 𝜌𝑛+1

2

=
(𝑛−1)

2
𝑖=1 ⌊

(𝑛−1)𝑝

2𝑛
⌋ + ⌊

𝑝

2
⌋−.⌊

(𝑛−1)𝑝

2𝑛
⌋ = ⌊

𝑝

2
⌋ =

𝑝−1

2
. 

Since the set 𝑃 ∪ 𝑁 has exactly 
𝑝−1

2
 members, proof of part (a) is established. 

 

(b) If 𝑛 is even, then, by relation (iii) in the proof of the Theorem,  

 ∑ (𝜇
𝑖

+ 𝜌𝑖) = ∑ (⌊
𝑖𝑝

𝑛
⌋−⌊

(𝑖−1)𝑝

𝑛
⌋) = ⌊

𝑝

𝑛
⌋− 0 +⌊

2𝑝

𝑛
⌋ − ⌊

𝑝

𝑛
⌋ + ⋯ = ⌊

(𝑝

𝑛
⌋ 

𝑛

2
𝑖=1

𝑛

2
𝑖=1 =

𝑝−1

2
, 

Again, since the set 𝑃 ∪ 𝑁 has  
𝑝−1

2
 members, part (b) also follows, and proof of the 

Corollary is complete. 

 

The following Guided Lemma reveals some elementary properties of the exact count 

𝜇 in Gauss’s Lemma.  

 

Guided Lemma: (a) Use the relations (i) and (ii) obtained in proof of the Theorem 
and show that every single member of the sequence 𝜌1 , 𝜇

1
, 𝜌2, 𝜇

2
, … is within a unit 

distance from the particular real number 
𝑝

2𝑛
. That is, for each 

 𝑖 = 1, 2, 3, …  we have, 

|𝜇
𝑖

−
𝑝

2𝑛
| < 1      and      |𝜌

𝑖
−

𝑝

2𝑛
|< 1 , 

also implying that 

0 ≤ 𝜇
𝑖
≤⌊

𝑝

2𝑛
⌋+1      and      0 ≤ 𝜌

𝑖
≤⌊

𝑝

2𝑛
⌋+1 . 

(b) Use the left inequality above, and parts (A) and (B) of the Theorem and establish 
the following lower and upper bounds for 𝜇; according to parity of 𝑛, 

 (I) If 𝑛 is odd, then 1 ≤𝜇 ≤ (
𝑛−1

2
 )(⌊

𝑝

2𝑛
⌋+ 1) and that the minimum and maximum 

bounds for 𝜇  are achieved, say in the two cases 𝑝 = 5, 𝑛 = 3 and 𝑝 = 13, 𝑛 = 7 
respectively. 

(II) If 𝑛 is even, then 1 ≤𝜇 ≤ (
𝑛

2
 )(⌊

𝑝

2𝑛
⌋+ 1), and that the minimum and maximum 

bounds for 𝜇  are achieved, say in the two cases 𝑝 = 3, 𝑛 = 2 and 𝑝 = 37, 𝑛 = 10 
respectively (you could use Example (e) on page 3 for the last case).  
 
Note that the two inequalities in parts (I) and (II) can be combined and put into a 
single one as,  

1 ≤𝜇 ≤ (
2𝑛−[1+(−1)𝑛+1]

4
 )(

𝑝

2𝑛
+ 1) . 

Indeed, in the same way, the two formulas expressing exact counts 𝜇 in the two 
parts (A) and (B) of the main Theorem could also be unified as the single formula,   
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                                              𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋)

2𝑛−[1+(−1)𝑛+1]

4
𝑖=1 .      

       
Analytical Geometric Interpretation of 𝜇;and an Alternative proof . 

 
Here, we consider the trapezoid OABC in the first quadrant of a Cartesian coordinate 

plane, as shown in the figure below. Then we show that the two formulas described in 

parts (A) and (B) of the main Theorem for 𝜇, simply describe all the interior lattice 

points (that is, points with integer coordinates) of the trapezoid OABC. More 

precisely, when 𝑛 is odd the formula for 𝜇 in part (A) can be interpreted as all 

possible interior lattice points inside the trapezoid OABC, however when 𝑛 is even 

the same 𝜇 will represent all the interior lattice points of the trapezoid OABC is 

together with at other lattice point with coordinates (
𝑛

2
, ⌊

𝑝

2
⌋) lying in the interior of the 

boundary segment AB of the trapezoid (see Example 2 where there are more than 

one). 

 

                                         (0,
𝑝

2
)                                                       𝐴(

𝑛

2
,

𝑝

2
) 

                                                                                                         𝐵(
𝑛

2
,

𝑝(𝑛−1)

2𝑛
) 

                                                                                                                        

                                                                  𝑦 =
𝑝

𝑛
𝑥 

                                                                                                                                     

                                                                                    𝑦 =
𝑝

𝑛
𝑥 −

𝑝

2𝑛
 

 

 

 

                                       𝑂(0,0)   𝐶(
1

2
, 0)                                     (

𝑛

2
, 0) 

 

Proof of the Geometrical Interpretation for Cardinality 𝜇 : 
 

We first start with Part (A) of the Theorem where 𝑛 is odd, and rewrite formula (1) 

for odd prime 𝑝 and odd 1 ≤𝑛 ≤ 𝑝 − 1 as follows, 

       𝜇 = ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋) =

𝑛−1

2
𝑖=1

∑ ⌊
𝑖𝑝

𝑛
⌋ −

𝑛−1

2
𝑖=1

∑ ⌊
(2𝑖−1)𝑝

2𝑛
⌋ =

𝑛−1

2
𝑖=1

∑ ⌊
𝑖𝑝

𝑛
⌋ −

𝑛−1

2
𝑖=1

∑ ⌊
(2𝑖−1)𝑝

2𝑛
⌋ =

𝑛−1

2
𝑖=1  ∑ ⌊

𝑖𝑝

𝑛
⌋ −

𝑛−1

2
𝑖=1

∑ ⌊
𝑖𝑝

𝑛
−

𝑝

2𝑛
⌋

𝑛−1

2
𝑖=1 .    

Now, as it can be observed from the above figure, each term ⌊
𝑖𝑝

𝑛
⌋,  𝑖 = 1, 2, … ,

𝑛−1

2
  in 

the first sum ∑ ⌊
𝑖𝑝

𝑛
⌋

𝑛−1

2

𝑖=1
 coupled interpreted as the ordinate of the lattice point (𝑖, ⌊

𝑖𝑝

𝑛
⌋) 

with the abscissa 𝑥 = 𝑖. Therefore, the sum ∑ ⌊
𝑖𝑝

𝑛
⌋

𝑛−1

2
𝑖=1  corresponds to all lattice points  

directly above the interval domain [1,
𝑛−1

2
] which are below the line 𝑦 =

𝑝

𝑛
𝑥. And in 

the same way the second sum ∑ ⌊
𝑖𝑝

𝑛
−

𝑝

2𝑛
⌋

𝑛−1

2
𝑖=1  corresponds to all lattice points 

 (𝑖, ⌊
𝑖𝑝

𝑛
−

𝑝

2𝑛
⌋) above the interval domain [1,

𝑛−1

2
] but below the line  𝑦 =

𝑝

𝑛
𝑥 −

𝑝

2𝑛
. 

Therefore, the difference between the two sums 𝜇 = ∑ ⌊
𝑖𝑝

𝑛
⌋ −

𝑛−1

2
𝑖=1

∑ ⌊
𝑖𝑝

𝑛
−

𝑝

2𝑛
⌋

𝑛−1

2
𝑖=1  is 
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exactly the number of set all possible lattice points in the interior of the trapezoid 

OABC. Note that, as an easy exercise one can show that neither of the two lines 

 𝑦 =
𝑝

𝑛
𝑥 and 𝑦 =

𝑝

𝑛
𝑥 −

𝑝

2𝑛
 can have any lattice points on them. However, it can 

happen that some integer abscissa over the domain [1,
𝑛−1

2
] may not carry any interior 

lattice point of in the interior of the trapezoid over them. This can be observed, for 

example when 𝑝 = 17, 𝑛 = 15 , for abscissa 𝑥 = 5. Moreover (by part (b) of the 

earlier Guided Lemma) the total number of those lattice points satisfies 

 1 ≤𝜇 ≤ (
𝑛−1

2
 )(⌊

𝑝

2𝑛
⌋ + 1) 

 
As for part (B) of the Theorem, the argument would be much the same, with only two 

rather differences to be shown. First, at least single lattice points with coordinates 

(
𝑛

2
, ⌊

𝑝

2𝑛
⌋) in the interior of the boundary segment a ABof the trapezoid OABC 

(corresponding to the last term of the sum  ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋)

𝑛

2
𝑖=1  will contribute in 

the counting of the  cardinality 𝜇 (see Example 2(b) at the end of the article that there 

may be more than one lattice point there). So, in the general case of (B) the 

cardinality 𝜇 would be the number interior lattice points of the trapezoid OABC 

together with lattice points lying in the lattice points in the interior of the boundary 

segment AB. The only other difference is that this time by part (b) of the earlier 

Guided Lemma, the upper bound for 𝜇  will 1 ≤𝜇 ≤ (
𝑛

2
 )(⌊

𝑝

2𝑛
⌋ + 1).  

 

Having delivered the interpretation of the exact count 𝜇 for the two parts of the 

Theorem, we now present a Proposition that provides a simple independent proof 

(from application of the Theorem) for the analytical geometric interpretation we have 

just delivered. Therefore, the proof of the Proposition can in turn be regarded as a 

second proof for the Theorem.  
Because of the extreme similarity of the arguments when the integer 𝑛 is odd or even 

corresponding to parts (A) and (B) of the Theorem we present the proof of the 

Proposition when 𝑛 is odd, but when 𝑛 is even we only elaborate on two aspects; that 

the point (
𝑛

2
, ⌊

𝑝

2𝑛
⌋) on the interior of the boundary AB of the trapezoid OABC should 

be added to the number of interior lattice points of the trapezoid when counting 𝜇, and 

that the range for the cardinality 𝜇 is a little different.  
 

Proposition: Let 𝑝 be an odd prime number, 1 ≤𝑛 ≤ (𝑝 − 1) and odd number,  𝑃 =

{1, 2, … ,
𝑝−1

2
}, 𝑁 = −𝑃, and 𝜇 = |𝑛𝑃 ∩ 𝑁|. Then  

(A) When 𝑛 is odd the cardinality 𝜇 is the same as the number lattice points in the 

interior of the trapezoid OABC shown below. 

(B) When 𝑛 is even the cardinality 𝜇 is the number lattice points in the interior of 

the trapezoid OABC shown below plus 1 (for the lattice point (
𝑛

2
, ⌊

𝑝

2𝑛
⌋) on the 

interior of the boundary segment AB of the trapezoid. 
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                         (0,
𝑝

2
)                                                       𝐴(

𝑛

2
,

𝑝

2
) 

                                                                                         𝐵(
𝑛

2
,

𝑝(𝑛−1)

2𝑛
) 

                                                     𝑦 =
𝑝

𝑛
𝑥 

                                                                                                                                     

                                                                     𝑦 =
𝑝

𝑛
𝑥 −

𝑝

2𝑛
 

 

 

 

 

                         𝑂(0,0)   𝐶(
1

2
, 0)                                    C(

𝑛

2
, 0) 

 

Proof: (A) Let 𝑛 be an odd integer, and first assume that (𝑢, 𝑣)is a lattice point in the 

interior of the trapezoid OABC. Then 
𝑝

𝑛
𝑢 −

𝑝

2𝑛
< 𝑣 <

𝑝

𝑛
𝑢, so −

𝑝

2𝑛
< 𝑣 −

𝑝

𝑛
𝑢 < 0, and 

−
𝑝

2
< 𝑛𝑣 − 𝑢𝑝 < 0, This latter inequality means the number 𝑛𝑣 has a negative least 

remainder 𝑚𝑜𝑑(𝑝), with 𝑣 ∈ 𝑃 = {1, 2, … ,
𝑝−1

2
}. Hence a member of 𝑛𝑃 ∩ 𝑁 

corresponds to (𝑢, 𝑣). 

Conversely, assume that for some 𝑣 ∈ 𝑃 = {1, 2, … ,
𝑝−1

2
} the multiplication 𝑛𝑣 has a 

negative least remainder 𝑚𝑜𝑑(𝑝). Then there exists a unique n integer 𝑢 ≥ 1 such 

that −
𝑝

2
< 𝑛𝑣 − 𝑢𝑝 < 0. This double inequality (manipulated in reverse to the above) 

implies 
𝑝

𝑛
𝑢 −

𝑝

2𝑛
< 𝑣 <

𝑝

𝑛
𝑢. On the other hand the right part 

𝑝

𝑛
𝑢 −

𝑝

2𝑛
< 𝑣 of the  

latter double inequality implies ⌊
𝑝

2𝑛
⌋ (

𝑝

2
+

𝑝

2𝑛
) =

𝑛+1

2
.  Since 𝑛 is an odd integer this 

means 𝑢 <
𝑛

2
, and together with 𝑣 <

𝑝

2
 it follows that (𝑢, 𝑣) is an interior lattice point 

of the trapezoid OABC.  Since the horizontal distance between the lines 𝑦 =
𝑝

𝑛
𝑥 and 

𝑦 =
𝑝

𝑛
𝑥 −

𝑝

2𝑛
 is only 

1

2
, there can be at most one lattice point in the interior of the 

trapezoid with second coordinate 𝑣, and therefore the correspondence between the set 

𝑛𝑃 ∩ 𝑁 and all the interior lattice points inside the Trapezoid  of one to one, and the 

proof part (A) of the proposition is complete. 

 

(B) As mentioned before, in this case the argument is very much the same for the 

interior points of the trapezoid OABC. However, when 𝑛 is even 
𝑛

2
 is an integer and 

we now show that the last term of the sum  ∑ (⌊
𝑖𝑝

𝑛
⌋ − ⌊

(2𝑖−1)𝑝

2𝑛
⌋)

𝑛

2
𝑖=1  will determine at 

least one more lattice point (
𝑛

2
, ⌊

𝑝

2𝑛
⌋) that should contribute in the exact counting of 

the cardinality 𝜇 by part (B) of the Theorem. To This end we need to show that the 

ordinate ⌊
𝑝

2𝑛
⌋ of the mentioned point satisfies  

𝑝(𝑛−1)

2𝑛
<⌊

𝑝

2𝑛
⌋ <

𝑝

2𝑛
.  Since 2 ≤ 𝑛 < 𝑝, 

and 𝑝 is an odd prime the fraction 
𝑝

2𝑛
 isn’t an integer, so the part ⌊

𝑝

2𝑛
⌋  <

𝑝

2𝑛
  is 

obvious. To show we also have 
𝑝(𝑛−1)

2𝑛
<⌊

𝑝

2𝑛
⌋, it is enough to consider that, 

 

𝑛 < 𝑝 →  
1

2
<

𝑝

2𝑛
 → − 

𝑝

2𝑛
< − 

1

2
 →  

𝑝

2
 −  

𝑝

2𝑛
<

𝑝

2
− 

1

2
= ⌊

𝑝

2𝑛
⌋ →

𝑝(𝑛−1)

2𝑛
<⌊

𝑝

2𝑛
⌋ . 
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And finally, we end the article by bringing a two part Example showing that the 

interior of the boundary of AB of the trapezoid OABC may contain only the lattice 

point (
𝑛

2
, ⌊

𝑝

2𝑛
⌋), or else there may be as many as 6 lattice points in the interior of AB. 

  

Example 2 : (a) For 𝑝 = 13 and 𝑛 = 12, the lattice point (
𝑛

2
,⌊

𝑝

2𝑛
⌋ ) = (6,6) = (𝑢. 𝑣) 

is a lattice point in the interior of the line segment boundary AB of the trapezoid, 

which happens to correspond to the negative least residue  

−
13

2
= −

𝑝

2
< 𝑛𝑣 − 𝑢𝑝 = 12 × 6 − 6 × 13 = −6 < 0 

Indeed, the congruency 52 ≡ 12 (𝑚𝑜𝑑13) shows that 𝑛 = 12 is a quadratic residue 

(𝑚𝑜𝑑13), and this fact can also be decided by finding that the sum in part (B) of the 

Theorem is an odd, as seen below  

𝜇 = ∑ (⌊
13𝑖

12
⌋ − ⌊

13𝑖

12
−

13

24
⌋) = 1

𝑛
2

=6

𝑖=1

+ 1 + 1 + 1 + 1 + 1 = 6 

Note that in this example, where 𝑛 = 12 is even, we have a single lattice point in the 

interior point of the trapezoid OABC directly above 𝑥 = 2, 3, 4, 5; and a lattice point 

(6,6), corresponding to the last term of the sum, on the interior of the boundary AB 

segment of the trapezoid OABC directly above abscissa 𝑥 = 6.  

 

(b) For 𝑝 = 71 and 𝑛 = 6, since 𝐴(6, 35.5) and 𝐵(6, 29.583̅), there are 6 lattice 

points (6,30), (6,31), (6,32), (6,33), (6,34), and (6,35) in the interior boundary AB of 

the trapezoid OABC. This can be also concluded by finding the last term of the sum  

∑ (⌊
71𝑖

6
⌋ − ⌊

71𝑖

6
−

71

12
⌋) ,

𝑛
2=3

𝑖=1

 

that amounts to ⌊
71×35

6
⌋ − ⌊

71×35

6
−

71

12
⌋ == 414 − 408 = 6.   

Note also that, since 192 − 6 = 355 = 5 × 71, 6∈ 𝑄6. This can also be concluded 

from part (B) of the Theorem, as 

𝜇 = ∑ (⌊
71𝑖

6
⌋ − ⌊

71𝑖

6
−

71

12
⌋) = (⌊

71𝑖

6
⌋ − ⌊

71𝑖

6
−

71

12
⌋) + 6    =

𝑛

2
=3

𝑖=1

                                   (⌊
71

6
⌋ − ⌊

71

6
−

71

12
⌋) + (⌊

142

6
⌋ − ⌊

142

6
−

71

12
⌋) =

                                            (11 − 5) + (23 − 17) + 6 = 6 + 6 + 6 = 18. 

 

 

      
 

 
 


