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For completeness, let us first recall an equivalent version of the lemma in
the title from elementary number theory.

Gauss’s Lemma: Let p be an odd prime number, and n an integer

satisfying 1 <n <p — 1. Then (g) = (—1)#, where u is the cardinality

u=[nPNN|, P= {1,2, ”7‘1} and N = —P,

Among other consequences, an immediate useful conclusion of the Lemma being

u
that; if the Legendre value (S) = 1 the integer n is a quadratic residue mod(p),

u
whereas when (g) = —1, n would be a non-quadratic residue mod(p).

Before we bring the main Theorem of the article I would like to point out that, given
an odd prime number p, I originally used a different method than the one described in
this article to classify quadratic/non-quadratic residues mod(p) for all factors of the

p-2|-1, and (p + 1); and the full description of the
original method is explored in details, in Article 3 of the Number Theory section of
my website www.mathwithdrastaneh.com . However, I later came up with a notable
inductive method (seen in the proof of the main Theorem here) to classify all

quadratic/non-quadratic integers mod (p) for all integers 1 < n < p — 1, and thereby

specific integers (p — 1) , pT_l,

formulating an exact count for the cardinality p in the assertion (S) = (=1)* of

Gauss’s Lemma; as laid out in the two assertions of the Theorem. The formulas
presented for u here turn out to be significant, not only because they imply all the
T and
(p + 1) mentioned earlier (see proof of Corollary 1); but more significantly the
formulas can technically be used to decide whether any integer

1 < n < p — 1 (and thereby any other integer kp + n mod(p),k € N,n # p) isa
quadratic or non-quadratic residue mod(p).

previous assertions about factors of the specific integers (p — 1) ,

Given any integer 1 < n < p — 1, as n may have different parity, the two similar
formulas in the two parts of the Theorem together present an unconventional

arithmetic method to find the Legendre value (S) for any odd prime p, and any given

n # p. As far as my own research is concerned there aren’t any record of such
formula(s) for the exact value of p in Gauss Lemma 1n literature; certainly not in any
classical number theory textbooks, nor in the number theory resources on line. Indeed,
the closest assertion one can find would be Theorem 9.7 in Tom Apostol’s classical
textbook “Introduction to Analytic Number Theory” where a different approach is
used to present a formula to determine only the parity of the cardinality number u;
which of course serves the purpose for concluding the Quadratic Law of Reciprocity,
as seen in his follow up Theorem 9.8 in the text. According to Apostol’s comments
following Theorem 9.8, the proof presented in his text is one of Gauss’s own many


http://www.mathwithdrastaneh.com/

original approaches to prove Quadratic Law of Reciprcity One might guess, most
likely, since Gauss knew only the knowledge about parity of the cardinality

= |nP N N| would suffice to conclude Quadratic Law of Reciprocity, he didn’t
bother to formulate an exact count for y, whereas the Theorem in this article provides

the exact count for .
. . . 2\ (3\ (5
p)> \p)> \79
Corollary 2 in the article shows how quick Legendre values such as ( ) ( ) ( )
are obtained by using the formulas displayed for u in the Theorem, and the Examplel
following Corollary 2 finds ( ) for several higher integers n . It should be obvious to

the reader familiar with the subject that, given an odd prime integer p, presently a
more conventional classification of an integer numbers n as quadratic/non-quadratic
residue is possible by applying Gauss's Lemma usually combined with the Law of
Reciprocity and other properties of Legendre values such as multiplicative property
and so on. However, given an odd prime p and any integer 1< n < p — 1, here the
two formulas laid out in the Theorem will find the exact count for u = |[nP N N|,

where P = {1, 2, ., p7—1} and N = —P, and hence one can decide about

quadratic/non-quadratic residuality of any number n even before the Law of
Reciprocity is introduced. Also, as for their practical classroom applications, the two

formulas allow students to find Legendre values (g) in an unconventional way

compared to the one commonly used at the present time. In number theory textbooks.
So, here we have another advantage of knowing the following Theorem.

Theorem (Astaneh) Let p be an odd prime number, 1 <n < (p — 1),

P = {1 2,. } N =—P,and p = |nP N N|. Thenin the assertlon( ) = (—1D*
of the popular ‘Gauss’s Lemma” is glven by,

(A)Ifn > 1 is odd, then u= zl 1([“"] (2l 1”’]). (1)

(B) If nis even, then (lmJ (2i- 1)pD (2)

Here, for any real number x, the notation | x| means the greatest integer | x| < x.

Before presenting proof of the Theorem, we first show that both Theorems 1&2 in
Article 3 of Number Thery section in my website can now be concluded as
Corollaries of the above Theorem. Since in that Article 3 part (B) and (C) of both
Theorems 1&2 in that article are concluded from corresponding part (A), in the
following Corollary I will only conclude parts (A) for those Theorems. Then the
follow up Corollary 2 will show how quickly integers n = 2, and n = 3, and even
n = 5 can be classified as quadratic/non-quadratic residues mod (p), for any odd
prime p in a new unconventional in contrast with the normal methods in literature.

Corollary 1: Let p be an odd prime number and let n be an odd integer satisfying

1<n< (p—1)/2.Then
(a) If nis a factor of (p—, or equivalently of (p — 1), then u = e Z(lp 2,
(n-D@+1)

(b) If nis a factor of(p— or equivalently of (p + 1), then u = y



(p-1)

Proof: (a) If nis an odd factor of (p ) then

m. Smce n is odd, part (A) of Theorem implies,

(llpJ (2i- l)pJ) %(li(p—nl)+ij _ (2i—1)(pz—nl)+2i—1l) —

§n1 ([l(p LD J l(m De-1) 21—1J) _ (.n;n (2im+ H —Qi-1m+

2n =1

= mn for some positive integer

(n—-1) (n—-1)

[21—1]) =224 Qim+0-Q2i—-1m-0)= %2 (m)= (=Dm _ (n=1)(2p=1)

2n 2 4in

(b) If nis an odd factor of @ then % = mn, for some positive integer m. Since
nis odd again part (A) of Theorem implies

- . -~ g
=5 (1] 252 -n T (-4 - (e
i=1 ([Zim + _—J - [(Zi —Dm— 2;;1]) =¥,4 @im+ (D + @i-Dm-
(_1)) — = 1)( )_ (n-1)m (n—l)(p+1).
2 4in

Corollary 2: For any odd prime number p, parts (B) and (A) of the Theorem classify
n = 2 and n = 3 as quadratic/non-quadratic residues mod(p) in a way apparently not
recorded in literature. Also, part (¢) of the Corollary shows how quickly you can
decide classifying n = 5 as well(!)

(a) (g) = (—1)(EJ_EJ). For example, since l?] — l?l = 30,92 = 2mod(79).
(b) (S) = (—1)(EJ_EJ). For example, since lQJ — lBJ = 3,3 & Q9
© () = oUEHEEHEED = oy EFRIHTESD = oy =1,

And that is why we have, 20% = 5 mod(79).

Also, before we bring the proof of the above main Theorem, let us bring some more

examples to see how formulas (1) and (2) of the Theorem work in practice.

Example 1 (a) Forp =91 and n = 11, since (nT_l) = 5, part (A) of Theorem implies

5
u= Z(gllJ l91(21—1)|> =4+4+4+5+4=21

i=1
Hence 11 is a non-quadratic residue mod(91).

(b) For p = 59 and n = 7, again since ? = 3, again from part (A) we get

Y (= ol BRI

i=1

Hence, 7 € Qso; and indeed 192 = 7 mod(59).
(¢) Forp = 47 and n = 14, since n is even andg = 7 part (B) implies,
47] 47(2] -1)
J =24+1+24+2+14+2+2=12

Hence, 14 € Q47; and indeed 222 = 14 mod(47).



(d) For p = 37 and n = 10, since n is even andg = 5 part (B) implies,

u= Z<l37]J 137(2]_1)>=2+2+2+2+2=10

Hence, 10 € Q37, and indeed 112 = 10 mod(37).

(n—l

(e) For p = 31 and n = 17, since ) = 8, again from part (A) we get,

u= Z([gllJ 131(21_1)|>_1+1+1+1+1+0+1+1_7

Therefor 17 is a non-quadratic residue mod(31).

Proof of the Theorem: To begin with, let 0 < p; < g be the greatest integer satisfying
pin € P, or else choose p; = 0 if such greatest integer doesn’t exist.

Then p; is the greatest integer satisfying 0 < p; < %, and therefore p; = l%] Next,
let 0 < Hi<3 ? be the greatest integer satisfying p;n + yyn < p (that is,
p+1 p+3

pin+pune {— TR (p— 1)} ), or else choose p; = 0 if such greatest integer

doesn’t exist. Then p, < %— p1, and therefore p, = EJ — p;. Now, let
0 < py< % be the greatest integer satisfying p;n + u,n + p,n < 32—p, or else choose
p2 = 0 if such greatest integer doesn’t exist. Then p; + p, + p, < 2—:, and

. . p 3p p 3p p
considering that p; + p, = l;J we have p, < n l;J, and therefor p, = ng — l;J
Nextlet 0 < pu,< g be the greatest integer satisfying p;n + yyn + p,n + pu,n < 2p,

or else choose p, = 0 if such greatest integer doesn’t exist. Again, considering that

3p

we have p; +u, +p, = —J we get

lZpJ l3pJ and therefore u, = [ J l
Agaln, let 0 < p3< 5 be the greatest integer satisfying pyn + u,n + p,n + p,n +
psn <52—p, or else choose p; = 0 if such greatest integer doesn’t exist. Again since
2p| . 5p  |2p 5p 2p
prtu o+ p, = l;], it follows p5 <. —[7J, and therefore p; = lﬁl_[7j'
And finally let 0 < pu;3< gbe the greatest integer satisfying pyn + pyn + p,n +
pon + psn + puzn < 3p, or else choose u, = 0 if such greatest integer doesn’t exist.

Again considering that p; + u, + p, + 1, +p3 [ J we get i, < l3pl l J and

hence p, = [ J l5pJ We now make a list of the p;’s and p,’s we have obtained to

conclude inductive formulas for p;’s and 78 ’s,
R o e S N |
w=E =15 w = =7

It is now an straightforward inductive practice to conclude that for any index i,

p; = l(Zt 1)pJ l(l 1)pJ @)
= - 52| (ii)




=2

While relations (i) - (iii) together might have an application to present yet another
already abundant proof for the Quadratic Law of Reciprocity (which isn’t of course
our present concern), we only need relation (ii) to conclude the Theorem by finding
out exactly how many of those ,’s we need to add up to obtain the precise count of
the cardinality p used in Gauss’s Lemma. To this end, let K be the positive integer

pn 1)n < Kp + . Then since _(p—21)n
nP, by the original constructlons of the p;i’s and p;’s it should be clear that p,, is will
be the last one we need to add up to the previous ,’s in order to obtain . That is,
= gyttt

satisfying Kp — P< is the last integer in the set

Therefore,
=S [ 25
i=1 i=1
In order to find the integer K we consider that Kp — < p-Ln 1)n <Kp+-= 1mp1ies

K< n(z—pl) +5< K + 1, and therefore K = l% + EJ' Next to find the exact

integer K we consider two cases as for parity of the integer n as follows.

(A) If n 1s odd, we first consider that
n<2p - np+n<np+2p - np-— p<np—n+p -

(n-1) _np-1) n+1
n—Dp<n(p 1)+p - <= 2p +1 <2 2— S
Hence % < n(zp Ol + < —1 and since 2=~ and Tl are consecutive integers it

follows K = l% + EJ = T' This concludes part (A) of the Theorem.

(B) If n is even, set n = 21, where [ is another integer. This time we first consider that

n=2<p - Ll 5 0<iol o<t
p 2 2 p 2 p
R e e R
p 2 P 2 2p 2 2 2 2
n(p 1)+ <l+— andK =1 = gHence part (B) is also settled, and

Therefore | <

the proof of the Theorem is complete.

The following is an application of the relations (i) and iii) that were automatically
obtained in the process of the proof of the Theorem but actually played no role in

-1),
% in set nP.

the proof, as a Corollary regarding the status of the integer
Corollary 3: Let p be an odd prime number, 1 <n < (p — 1),

P = {1 2,. } N = —P. And let u = |[nP N N| as the exact count obtained in

n(p-1)
2

the two parts of the Theorem. Regarding the last integer € nP we have,

(a) If nis odd, then ——= n(p D= = I mod(p) for some | € P. That is, the sequence

P1 g, P2, Ky, - OF non negative numbers constructed in proof of the
Theorem ends with pn+1.
2



n(p-

(b) If nis even, then ——= > D= = I mod(p) for some |l € N. That is, the sequence

Py P2r Ky oo of non-negative numbers constructed in proof of the
Theorem ends with with un.
2
Proof: (a)Ifn > 1is odd then, by relation (iii) in the proof of the Theorem,

(n )

Lk o) =2 (-2 = [0+ - 2]+ = [522)
because the above sigma is telescopic.

On the other hand the relation (i) in the proof of the Theorem implies,

pn+1 lpJ l(n 1p|. Therefore

(71 1)

% (u + o) + ot = - DPJ l J [(n DPJ [ J =7

Since the set P U N has exactly T members, proof of part (a) is established.

(b) If n is even, then, by relation (iii) in the proof of the Theorem,

00 = T (2 12]) = [ o2 [ - = (2] =222
Again, since the set P U N has pT_l members, part (b) also follows, and proof of the

Corollary is complete.

The following Guided Lemma reveals some elementary properties of the exact count
u in Gauss’s Lemma.

Guided LLemma: (a) Use the relations (i) and (ii) obtained in proof of the Theorem
and show that every single member of the sequence py, i1, P2, i4,, ... is within a unit

distance from the particular real number %. That is, for each
i=1,2,3,.. we have,

|, —%| <1 and |pl. —2% <1,
also implying that

p p
0<ps|Z+1 and 0<p |2+,

(b) Use the left inequality above, and parts (A) and (B) of the Theorem and establish
the following lower and upper bounds for u; according to parity of n,
(I) fnisodd, then 1 <u < (—)(l—J+ 1) and that the minimum and maximum

bounds for u are achieved, say inthetwocasesp =5,n=3andp=13,n=7
respectively.

(N If nis even,then1 <u < (2)([2%J+ 1), and that the minimum and maximum

bounds for u are achieved, say in thetwo casesp =3, n=2andp =37,n =10
respectively (you could use Example (e) on page 3 for the last case).

Note that the two inequalities in parts (I) and (Il) can be combined and put into a

single one as,
2n— [1+( 1)n+1

IT=su=( )( +1).
Indeed, in the same way, the two formulas expressmg exact counts u in the two
parts (A) and (B) of the main Theorem could also be unified as the single formula,



1+( 1)n+1]

e N

Analytical Geometric Interpretation of u;and an Alternative proof .

Here, we consider the trapezoid OABC in the first quadrant of a Cartesian coordinate
plane, as shown in the figure below. Then we show that the two formulas described in
parts (A) and (B) of the main Theorem for y, simply describe all the interior lattice
points (that is, points with integer coordinates) of the trapezoid OABC. More
precisely, when n is odd the formula for u in part (A) can be interpreted as all
possible interior lattice points inside the trapezoid OABC, however when n is even
the same u will represent all the interior lattice points of the trapezoid OABC is

together with at other lattice point with coordinates (§> EJ) lying in the interior of the

boundary segment AB of the trapezoid (see Example 2 where there are more than
one).

(R

¥

0(0,0) CG,0) ,0)

Proof of the Geometrical Interpretation for Cardinality u :

We first start with Part (A) of the Theorem where n is odd, and rewrite formula (1)
for odd prime pandodd1 <n <p — 1 as follows

p= Zl 1([””J [(Zl 1)”J) llle Zl 11(21 1)pJ
m 8] -2 S - n ] - 2 &
n-1

Now, as it can be observed from the above figure, each term l%J, i=12,.. 5 n

n-1 ,

the first sum .2, l%] coupled interpreted as the ordinate of the lattice point (i, l%J)
n-1 .

with the abscissa x = i. Therefore, the sum %, 2, l%] corresponds to all lattice points

directly above the interval domain [1, nT_l] which are below the line y = %x. And in

n-1
the same way the second sum .2, lg — EJ corresponds to all lattice points

(i, [— — —J) above the interval domain [1 —] but below the line y = Ex — %
Therefore, the difference between the two sums yu = Zl ) lsz Zl ) l— ——\is

7



exactly the number of set all possible lattice points in the interior of the trapezoid
OABC. Note that, as an easy exercise one can show that neither of the two lines
y = %x andy = sx — % can have any lattice points on them. However, it can
happen that some integer abscissa over the domain [1, nT_l] may not carry any interior
lattice point of in the interior of the trapezoid over them. This can be observed, for
example when p = 17,n = 15, for abscissa x = 5. Moreover (by part (b) of the
earlier Guided Lemma) the total number of those lattice points satisfies

1< EH(E]+ D

As for part (B) of the Theorem, the argument would be much the same, with only two
rather differences to be shown. First, at least single lattice points with coordinates

(2 , l;;nj) in the interior of the boundary segment a ABof the trapezoid OABC

(corresponding to the last term of the sum Z?:l (EJ - l%b will contribute in

the counting of the cardinality u (see Example 2(b) at the end of the article that there
may be more than one lattice point there). So, in the general case of (B) the
cardinality u would be the number interior lattice points of the trapezoid OABC
together with lattice points lying in the lattice points in the interior of the boundary
segment AB. The only other difference is that this time by part (b) of the earlier

Guided Lemma, the upper bound for u will 1 <u < (g )([%J +1).

Having delivered the interpretation of the exact count u for the two parts of the
Theorem, we now present a Proposition that provides a simple independent proof
(from application of the Theorem) for the analytical geometric interpretation we have
just delivered. Therefore, the proof of the Proposition can in turn be regarded as a
second proof for the Theorem.

Because of the extreme similarity of the arguments when the integer n is odd or even
corresponding to parts (A) and (B) of the Theorem we present the proof of the
Proposition when n is odd, but when n is even we only elaborate on two aspects; that

the point (g , lzinJ) on the interior of the boundary AB of the trapezoid OABC should

be added to the number of interior lattice points of the trapezoid when counting u, and
that the range for the cardinality p is a little different.

Proposition: Let p be an odd prime number, 1 <n < (p — 1) and odd number, P =
{1, 2, ...,pT_l}, N = —P,and u = |nP N N|. Then

(A) When n is odd the cardinality p is the same as the number lattice points in the
interior of the trapezoid OABC shown below.
(B) When n is even the cardinality u is the number lattice points in the interior of

the trapezoid OABC shown below plus 1 (for the lattice point (g, l%]) on the
interior of the boundary segment AB of the trapezoid.
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Proof: (A) Let n be an odd integer, and first assume that (u, v)is a lattice point in the
interior of the trapezoid OABC. Then %u - zﬂn <v< %u, SO — Zﬂn <v-— %u < 0, and

—g < nv — up < 0, This latter inequality means the number nv has a negative least
remainder mod(p), withv € P = {1 2,. > } Hence a member of nP N N
corresponds to (u, v).

Conversely, assume that for some v € P = {1 2,. } the multiplication nv has a

negative least remainder mod(p). Then there exists a umque n integer u = 1 such
that —g < nv — up < 0. This double inequality (manipulated in reverse to the above)

implies Bu — 1 <v< Bu On the other hand the right part %u — % < v of the
latter double 1nequa11ty implies l J ( ;1) = nTH Since n is an odd integer this
means u < —, and together with v < = 1t follows that (u, v) is an interior lattice point
of the trapezmd OABC. Since the horlzontal distance between the lines y = —x and

y = x - 1 is only —, there can be at most one lattice point in the interior of the

trapezmd w1th second coordinate v, and therefore the correspondence between the set
nP N N and all the interior lattice points inside the Trapezoid of one to one, and the
proof part (A) of the proposition is complete.

(B) As mentioned before, in this case the argument is very much the same for the
interior points of the trapezoid OABC. However, when n is even % is an integer and

we now show that the last term of the sum Ziil (l%J - l%]) will determine at

least one more lattice point (g, lz%J) that should contribute in the exact counting of
the cardinality u by part (B) of the Theorem. To This end we need to show that the
ordinate [Z—J of the mentioned point satisfies 22— <l2nJ < —. Since 2 < n <p,

and p is an odd prime the fraction 2£n isn’t an 1nteger, so the part l%] < 2% 18

obvious. To show we also have % < lzﬂnJ’ it is enough to consider that,

1 1 1 -1
2 2n 2n 2 2 2n 2 2 2n 2n



And finally, we end the article by bringing a two part Example showing that the
interior of the boundary of AB of the trapezoid OABC may contain only the lattice

point (g, I%J), or else there may be as many as 6 lattice points in the interior of AB.

Example 2 : (a) For p = 13 and n = 12, the lattice point (g'lzinJ ) = (6,6) = (u.v)

is a lattice point in the interior of the line segment boundary AB of the trapezoid,

which happens to correspond to the negative least residue

13 p
—7=—E<nv—up=12><6—6><13=—6<0

Indeed, the congruency 52 = 12 (mod13) shows that n = 12 is a quadratic residue
(mod13), and this fact can also be decided by finding that the sum in part (B) of the
Theorem is an odd, as seen below

3 13i 13i
:Z([ J ———)=1+1+1+1+1+1=6

Note that in this example, where n = 12 is even, we have a single lattice point in the
interior point of the trapezoid OABC directly above x = 2, 3,4, 5; and a lattice point
(6,6), corresponding to the last term of the sum, on the interior of the boundary AB
segment of the trapezoid OABC directly above abscissa x = 6.

(b) For p = 71 and n = 6, since A(6,35.5) and B(6,29.583), there are 6 lattice
points (6,30), (6,31), (6,32), (6,33), (6,34), and (6,35) in the interior boundary AB of
the trapezoid OABC. This can be also concluded by finding the last term of the sum
n
5=3

2(711'] 71i 71)
, 6 6 121)’

i=1
that amounts to [ — %J == 414 - 408 = 6.

71><35J _ l71><35
Note also that, since 192 — 6 = 355 = 5 X 71, 6€ Q. This can also be concluded
from part (B) of the Theorem, as

0 (s Bl et | (s Bl ek (L
(o i g (s I i

(11-5)+(23-17)+6=6+6+6=18.
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