

A Calculus Proposition and an Application

Ali Astaneh, Vancouver, B.C

Proposition: Let $f(x)$ be a differentiable function and $A(a, f(a))$, $B(b, f(b))$ two points on its graph, and let T_a, T_b denote tangent lines at A and B respectively.

Then for $0 < s < 1$ the following two conditions are equivalent:

$$(a) \frac{f(b) - f(a)}{b - a} = (1 - s)f'(a) + s f'(b)$$

(b) $c = s a + (1 - s) b$ is the abscissa of the point of intersection of T_a and T_b .

Note, that this means the same linear combination expressing the slope of the secant segment AB in terms of the respective slopes $f'(a)$ and $f'(b)$ of T_a and T_b will determine how the abscissa of the point of intersection of the lines T_a and T_b can be expressed in terms of a and b , by switching the coefficients of the linear combination.

Proof: (a) \rightarrow (b) Let c be the abscissa of the point of intersection of T_a and T_b . Since $f'(a) = \frac{f(c) - f(a)}{c - a}$ and $f'(b) = \frac{f(c) - f(b)}{c - b}$, eliminating $f(c)$ from these two relations, and solving the resulting relation for c implies

$$c = \frac{bf'(b) - af'(a) - f(b) + f(a)}{f'(b) - f'(a)}. \quad (*)$$

On the other hand the assumption $\frac{f(b) - f(a)}{b - a} = (1 - s)f'(a) + s f'(b)$ in part (a) can be written as $-f(b) + f(a) = -(b - a)[(1 - s)f'(a) + s f'(b)]$. If you now substitute the right hand side of this latter relation for $-f(b) + f(a)$ in the numerator of the fraction (*) and simplify the fraction (patiently!), you get exactly $c = s a + (1 - s) b$.

To prove (a) \rightarrow (b) assume that the abscissa of the point of intersection is $c = s a + (1 - s) b$. Since the same abscissa should be given by (*) we have relation,

$$c = s a + (1-s) b$$

$$c = \frac{bf'(b) - af'(a) - f(b) + f(a)}{f'(b) - f'(a)}.$$

Now, equating the two right hand sides of the above, the resulting relation can (patiently!) be expressed as

$$\frac{f(b) - f(a)}{b - a} = (1 - s)f'(a) + sf'(b).$$

And the proof of the proposition is complete.

Application The above Proposition can help to find the point of intersection of two tangent lines Ta and Tb to a given curve represented by a function $y = f(x)$ at two given points $A(a, f(a))$, $B(b, f(b))$ of the curve quicker than the known conventional way(s). Because (as shown in the following example after having gotten all the six necessary real numbers $a, f(a), f'(a), b, f(b), f'(b)$ ready you can first solve the relation $\frac{f(b) - f(a)}{b - a} = (1 - s)f'(a) + sf'(b)$ for s , and then consider the number $c = s a + (1 - s) b$ to be the first coordinate of the point of intersection, and then find $f(c)$ as for the second coordinate of the point.

Example Consider the cubic curve defined by $f(x) = x^3 - 3x^2 + 6$, and the two points $A(3,6)$ and $B(4,22)$ on the curve.

Here, $a=3, f(a) = 6, f'(a) = 9, b=4, f(b) = 22$, and $f'(b) = 24$. Then the relation

$$\frac{f(b) - f(a)}{b - a} = (1 - s)f'(a) + sf'(b) \text{ simply becomes } 16 = 9(1 - s) + 24 s \text{ from}$$

which we conclude $s = 7/15$. Therefore the abscissa of the point of intersection of the tangent lines to the curve is $c = s a + (1 - s) b = 21/15 + 32/15 = 53/15$.

Equating slope of the line segment AC to $f'(a) = 9$ (the slope of Ta), and solving the equation for $f(c)$ we get $f(c) = 54/5$, and $(53/15, 54/5)$ would be the point of intersection.