

Binomial Expansion for Negative Powers

Ali Astaneh PhD(Lon), Vancouver BC

I first recall the popular binomial expansion for positive integer powers as,

$$(a + b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^2 + \dots + \binom{n}{n} b^n$$

Where $\binom{n}{j} = \frac{n!}{j!(n-j)!}$ denotes combinations of n objects taken j at a time. Or in sigma notation,

$$(a + b)^n = \sum_{j=0}^n \binom{n}{j} a^{n-j} b^j .$$

Next, I bring the particular case of binomial expansion with negative powers as a lemma.

Lemma For any positive integer n , and any real number $-1 < x < 1$,

$$(1 + x)^{-n} = 1 - \binom{n}{1} x + \binom{n+1}{2} x^2 - \binom{n+2}{3} x^3 + \dots$$

In sigma notation this means,

$$\frac{1}{(1 + x)^n} = \sum_{j=0}^{\infty} (-1)^j \binom{n+j-1}{j} x^j \quad (1)$$

Proof: I will present the proof by mathematical induction on n .

For $n = 1$ the above identity for $-1 < x < 1$ is nothing but

$$\frac{1}{(1 + x)} = 1 - x + x^2 - x^3 + \dots$$

which is a known fact, say from BC Pre-Calculus 11 curriculum, as the common ratio $-x$ of the infinite geometric series $1 - x + x^2 - x^3 + \dots$ is a real number strictly between -1 and 1 .

In order to complete the proof, it is enough to assume that the above (1) is true and show that we also have

$$\frac{1}{(1 + x)^{n+1}} = \sum_{j=0}^{\infty} (-1)^j \binom{n+j}{j} x^j \quad (2)$$

To this end, I first differentiate both sides of the assumed identity (1) and get,

$$\begin{aligned}\frac{-n}{(1+x)^{n+1}} &= \sum_{j=1}^{\infty} (-1)^j * j \binom{n+j-1}{j} x^{j-1} \\ &= - \binom{n}{1} + \sum_{j=2}^{\infty} (-1)^j j \binom{n+j-1}{j} x^{j-1} \quad (3)\end{aligned}$$

Dividing both sides of (3) by $-n$ we get,

$$\frac{1}{(1+x)^{n+1}} = 1 + \sum_{j=2}^{\infty} (-1)^{j+1} \frac{j}{n} \binom{n+j-1}{j} x^{j-1}$$

I will now make the substitution $j = k + 1$ for the index of above sigma and the indices j involved in its general term at the same time, and get

$$\begin{aligned}\frac{1}{(1+x)^{n+1}} &= 1 + \sum_{k+1=2}^{\infty} (-1)^{k+2} \frac{k+1}{n} \binom{n+k}{k+1} x^k = \\ &1 + \sum_{k=1}^{\infty} (-1)^k \frac{(n+k)!}{k! n!} x^k = \\ &1 + \sum_{k=1}^{\infty} (-1)^k \frac{k+1}{n} \frac{(n+k)!}{(k+1)! (n-1)!} x^k = \\ &\sum_{k=0}^{\infty} (-1)^k \binom{n+k}{k} x^k.\end{aligned}$$

This completes the proof.

Remark : Since for $-1 < x < 1$ we have $\frac{1}{(1+x)} = 1 - x + x^2 - x^3 + \dots$, the above Lemma also implies the rare occurrence of a concrete example where the n^{th} power of a convergence infinite series could be another convergence series, that is, for $-1 < x < 1$,

$$[1 - x + x^2 - x^3 + \dots]^n = 1 - \binom{n}{1} x + \binom{n+1}{2} x^2 - \binom{n+2}{3} x^3 + \dots.$$

Or, in sigma notation

$$\left[\sum_{k=0}^{\infty} (-1)^k x^k \right]^n = \sum_{k=0}^{\infty} (-1)^k \binom{n+k}{k} x^k.$$

I now bring the generalization of the above Lemma as a proposition.

Proposition : Let $a, b \neq 0$ be real numbers and let $-\left|\frac{b}{a}\right| < x < \left|\frac{b}{a}\right|$.

Then for any positive integer n we have the following expansion,

$$(ax + b)^{-n} = \frac{1}{b^n} - \frac{a}{b^{n+1}} \binom{n}{1} x + \frac{a^2}{b^{n+2}} \binom{n+1}{2} x^2 - \frac{a^3}{b^{n+3}} \binom{n+2}{3} x^3 + \dots$$

In sigma notation this means,

$$\frac{1}{(ax + b)^n} = \sum_{j=0}^{\infty} (-1)^j \frac{a^j}{b^{n+j}} \binom{n+j-1}{j} x^j.$$

Proof: Since $\frac{1}{(ax+b)^n} = \frac{1}{b^n} \frac{1}{(1+(\frac{ax}{b}))^n}$ and since $-\left|\frac{b}{a}\right| < x < \left|\frac{b}{a}\right|$ implies $-1 < ax/b < 1$, the above Lemma (when x is replaced by (ax/b)) leads to

$$\begin{aligned} \frac{1}{(ax + b)^n} &= \frac{1}{b^n} \frac{1}{\left(1 + \left(\frac{ax}{b}\right)\right)^n} = \frac{1}{b^n} \left[\sum_{j=0}^{\infty} (-1)^j \binom{n+j-1}{j} \left(\frac{ax}{b}\right)^j \right] = \\ &\quad \sum_{j=0}^{\infty} (-1)^j \frac{a^j}{b^{n+j}} \binom{n+j-1}{j} x^j \end{aligned}$$

and the proof is complete.

Corollary: Binomial Expansion for Negative Powers

Let $0 < |a| < |b|$, then if you set $x = 1$ in the assertion of the above Proposition, you get the following binomial expansion for negative powers described as :

$$(a + b)^{-n} = \frac{1}{b^n} - \binom{n}{1} \frac{a}{b^{n+1}} + \binom{n+1}{2} \frac{a^2}{b^{n+2}} - \binom{n+2}{3} \frac{a^3}{b^{n+3}} + \dots .$$

Or,

$$(a + b)^{-n} = \sum_{j=0}^{\infty} (-1)^j \binom{n+j-1}{j} \frac{a^j}{b^{n+j}}$$