The Exact Values Of Trig Ratios For Special Angles

The following is how students of PMath 11 and PMath 12 can set up a table for the exact values of special angles $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}, \frac{2\pi}{3}, \frac{3\pi}{4}, \frac{5\pi}{6}, \pi$, in about a minute.

Step 1: Line up the above special angles over a number line, and below each of the angles record the fraction $\frac{\sqrt{}}{2}$ (yes, with an empty radical), and with $\sin \theta$ on the far left below θ ,

<u>Step 2:</u> Start counting up from zero to 4, and then down to 0 and fill the radicals with these counting numbers in the same order,

Step 3: Simplify the second row, and record the result as a third row,

<u>Step 4:</u> In order to write the values of $\cos \theta$ as a fourth row proceed as follows: As the first five entries of this row, enter the first five entries of the third row, **but in reverse order.** Then, as the remaining four values of $\cos \theta$, record the opposite values of the first four of five numbers you recorded earlier, in such a way that the entries of the fourth row show up in descending order.

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	
$\sin \theta$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$	
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	

Step 5: In order to write the values of $\tan \theta$ divide the corresponding values of the third row by the fourth row,

θ	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{4}$	$\frac{5\pi}{6}$	π	
$\sin \theta$	$\frac{\sqrt{0}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{4}}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{1}}{2}$	$\frac{\sqrt{0}}{2}$,
$\sin \theta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	$-\frac{1}{2}$	$-\frac{\sqrt{2}}{2}$	$-\frac{\sqrt{3}}{2}$	-1	
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	∞	$-\sqrt{3}$	-1	$-\frac{1}{\sqrt{3}}$	0	

<u>Remark</u> One can add three rows for ratios $\cot \theta$, $\sec \theta$, and $\csc \theta$, by recording the reciprocal of the values in rows four, three, and the fifth row, respectively.