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Given a polynomial equation x™ + a,_;x™" 1 + .. + a;x + a, = 0 with real
or complex coefficients, the main objective of this article is to construct a
new polynomial equation X™ + A,,_;x" 1 + ..+4;x + A; = 0 whose n
roots are “squares” of the solutions of the original equation. As expected
the coefficients of the second equations are to be expressed in terms of the
coefficients of the original one. For convenience (as well as a good reason!),
| will refer to the second equation as the “transit” equation for the first
one. One reason being, if you are interested to find those solutions of the

first equations that are square root vk of non-complete square positive
integers k, you can find positive integer roots of the transition equation,
and consider + square root of them to be “square root” solutions of the
original equation.

As for how | ended up with the odd looking sigma in the following theorem,
| might add | simply tried to find a system of n linear equations in terms of
the n unknown coefficients A;’s and solve the system in terms of the
original coefficients a;’s. To this end, | used the popular set of n relations
that hold between the n zeros of a polynomial of degree n and its n
coefficients ag, k =1,2,...,n — 1. | simply grouped those relations in a
way to enable me to solve forA,’s in terms of a;’s. This process will not
appear in the proof, as | realized at the end that a proof of my formulation
can be delivered by induction on n . Here is the formulation,

Theorem [A. Astaneh] Let x™ + a,_;x" 1 + ..+ a;x + a, = 0 be a given
polynomial equation with real or complex coefficients and set,

AO = (_1)na(%l
Ak = (_1)n+k[a12c + 2 Zﬂ:&(—l)k_jajaz,(_j ], fork = 1, 2, .n—1.

Then roots of the “transit” equation X" + A4,,_ X" 1+ .+ A, X+ A4,=0
will be exactly squares of the roots of the original polynomial.



Note that, whenever in manipulations in the proof the coefficient a,, occurs
we will consider it to be the leading coefficient of the original equation
which means a,, = 1. This, for example occurs as a term of the sigma when
k=n—1and j =k — 1, asthen the coefficient a,,_; becomes a,, = 1.

Proof: We prove the claimed assertion by induction on the degree n of the
polynomial .The case n = 1 is obvious, because the polynomial whose root
is the square of the only solution of the polynomial x +a, =0is
X — a3 = 0, which means the relation Ay, = (—1)ag holds.
Assume that the assertion holds for nn, and consider an n + 1 degree
polynomial equation
X" +¢ X" +c X"+ ... +cXx +¢c,=0. (1)

By the fundamental theorem of algebra, this equation hasn + 1 real or
complex roots. Therefore, in particular for some real or complex number 7,
the equation it can be factored as

(x-r(x"+a_ x"" + .. +ax+a)=0. (2
Next, by induction hypothesis, the roots of the following equation are
exactly squares of the roots of the original equation

X=X+ Ay 1x" 1+ . +4x+ 4,) =0, (3)

k-1 i
where Ay = (=1)'aj, and A, = (K [aE +2§(—1)k '3jag il

If we know assume the roots of the polynomial

X" 4+ C X"+ .. +CX+C,=0 (4)
are squares of the solutions of equation (1), then we must show that
Co = (=)™ *cg, (5)

Co = (D)™l + 2 X0 (=D T jeg—; 1, fork =1,2,..1.(6)
To settle (5), since equations (3) and (4) have the same roots and the same
leading coefficients 1, all other coefficients must be the same, in particular

C,=—1"A =—r*(-1'a} = (-)""r'; =(-D"c;

which settles (5). And finally to show (6), once again considering that not
only equations because (3) and (4) have the same coefficients, but also (1)
and (2) have the same coefficients we have the following two relations

Ck = Ak—l - TzAk, fork = 1, 2, 1. (7)
Cy = Q-1 —ray, fork=1,2,.n—1. (8)



The proof will be complete if we show that the right hand sides of (6) and
(7) are equal. Since the right hand side of (7) is

Ay — 124y

= (D" ad Ly +2 Z(—l)k-l-iaia%_z_i]

—r2(=1)"*[az +22( D* " a;az—; ]

it is enough to show that for k = 1 2 .,N we have,

(_1)n+1+k [C2 ) kz_:l(_l)k—ICICZk I]:
(™K AaZ  v2 S0 e, ,

—r? (—1)”+‘<[ak +2 ;(—1)k_'aia2k_i]
Or
2 ki _ 42 Gonk—-i-1
Ci +2 g(—l) CiCop _i = 84 +2 Z( 1) &y o _j
+r [a +2 Z( 1)k 8a, il

The above relation will be established by con5|der|ng that by (1) and (2)
Co = —Tay,Cp, = an_q —1,and ¢, = ai_q1 — ra,. However, in order to
avoid the appearance of an undefined coefficient of a_, it is necessary to

isolate the first term of the sigma on the left. Also for a preliminary
cancellation it helps to isolate the first term of the last sigma on the right,

to get
(&, _q—ra )2 + 2(—1)k (-rag)(@,y), _q—ray)

+2 kz_l(—l)k_i(a-_ —ra-)(a2k Ty .):

a2  +2 z( pk—1-laa, , .+r[aZ +2(- 1)ka0a2k+2z( Dk Taa

The above equation is first simplified into

2k —il



+(-)K+lra a

“fady 1 022k —1
k-1 i
+§(—1)k I(ai_l—rai)(a2k i1y -)=
+ Y (-pk-i-1a (-
rd didok —2 - &k —i

Then, it is further simplified into

k+1

—ra a, 4 +(=-1) ranas, _q
k-1 k—l _
2 (D7 (@ gy g Ty _qdpy T Tdjagy i _q)=

+Z( 1)k a|a2k 2—1
Next, a change of index j=i+1 in the sigma on the right will give rise into

k+1
—rakak 1 +(-1) raoa2k 1

k-1 K—i ~
2D @G Ay g T g —TAjAgy i _q) =

+ k-1 1 k _ J
2EDT Tay B g
Therefore the equation is reduced to

+(-pk+la a

-1 032k —1

+ DT ey yay gy _j_)=0
Next we will split the sigma involved into two sigmas, and get,
k+1
ey 1 * DT T agay g
+y (-pk-i+la +z( pk-i+lyq -0
— ~ 1%k - 172k —1—-1

Again, upon change of index j=i+1 in the sigma on the right we get



+(-)*lagay,

. .
+Zz(_l)k j+2a
.

31

k-1 i
+3 (~pk-i+15 j—18k— =0

i —1%2k — i
And finally we isolae the first term of the sigma on the left, and the last
term of the sigma on the right , giving rise to difference of two identical
sigmas that cancel. The equality to be shown will eventually turn into

k+1
A +D" agay, g
+ (—1)ka0a2k +(—1)2ak 13y =0

which is a true relation. Therefore the proof is complete.

Remark The above Theorem can reduce the problem of finding the ‘square
root’ zeros of a given polynomial x™ + a,,_;x™" 1 + ... + a;x + a, = 0 with
real or complex coefficients to that of finding positive roots of the
“transition” polynomial equation X™ + A,_,x" 1 + .+4;x + A; = 0, as
seen in the following six examples.

Example 1 The transition equation for the quadratic equation
x*+a,x+a,=0readsas X’- (a’-2a,)X +a; =0.
Therefore, for the specific equation x> —v/2 x —4 = 0 the transition
equation is X2 -10 X +16=0. Since the transition equation has roots
X =2, 8 one can check that x=—/2, and 2+/2 are roots of the original
equation.
Observe in the event that equation x* +a, x+a, =0 has complex roots
instead, the transition equation will have squares of those complex
numbers as its roots. For example the roots of x* —6x +13=0 are
x=3 + 21i, and the roots of the transition equation X*-10X +169=0 are
X =5 + 12i, which are respective squares of the complex numbers
Xx=3 %+ 21i.

Example 2 The transition equation for the cubic equation
x*+a, x* +a,x + a, = 0 reads as
X®—(a2 - 2a,)X* + (& -2a,a,)X —a. = 0.To see a direct verification



of this assertion, we only need to observe the following three identities in
terms of the roots x,,x,,x, of the original cubic equation,

X2+ X5+ X5 = (X, + X, +X5)7 =2 (XX, + Xy X5 + X X,)

XIXZ + XIX2 + X2XG = (XX, + X Xg + X, X5) 7 = 2 X, X, Xg (X, + X, + Xs)

X12X22X32 = (X1X2X3)2

Therefore, for the specific equation x* +(2-v2)x?> =2 (2 +2)x -8 = 0
the transition equation is X® —14 X* + 56 X —64 =0. Since the latter
equation has roots X = 2, 4, and8, one can check that x =+/2, —2, and 2+/2
are roots of the original cubic equation.

Example 3 The transition equation for the quartic equation
x* +a,x*+a, x> +a,x +a,=0

reads as

X*—(af-2a,)X%+(af —2a,a, +2a,)X* - (a/ -2 a,a,) X +a; =0.
Therefore, for the specific equation x* —v/2 x* =7 x2 +3J2x +12=0 the
transition equation is X*—-16 X*+85X? -186 X +144 =0. Since the latter
equation has roots X =2, 3, and 8, one can see that x =—/2, 2/2, and +/3
are roots of the original quartic equation.

Example 4 The transition equation for the Hexatic equation

xX°+a,x* +a,x’+a, x* +a,x +a, = 0
reads as,
X®—(a; —2a,) X* +(af -2a,a, +2a,)X*—(a’ - 2a,a, +2a,a,) X’ +(a’ -2 a,a,) X —a; =0.
Therefore, for the specific equation x°>+2x*-5x*>-10x* +6x +12=0 the
transition equation is x®—14x* +77 x> -208 x> +276x —144=0. Since the
transition equation has rootsX =2, 3, and 4, one can check that
x = ++/2, —2, and ++/3 are roots of the original quintic equation.

Example 5 The transition equation for the quintic equation
x®+ax’+a,x* +a,;x’+a, x> +a,x +a, = 0

reads as follows

X®—(a? - 2a,)X° +(aZ —2a,a, +2a,)X* —(aZ - 2a,a, +2a,a, —2a,) X°

+(aZ —2a,a, +2a,3,)X* - (a’ -2 a, a,) X +a; =0.



Example 6 An application of theorem 2 will show that the transition

equation for the quartic equation a4x4 +a3x3 +ay x2 +a; X + ag=0isas

follows

4 2 3 2,.2 2 4, 2 6.2
X —(a3 —2a2a4)x +a4(a2 —2a1a3+2 a0a4)X —a4(a1 -2 aOaZ)X +a,a, =0.
For example, in the case of the equation 2x* +2 x® —x* -3x—-3=0 the

transition function will read as x% —8x3 +4Xx2 —48X +576=0. An application
of the integral zero theorem will show that X =6 is a (double) root of the
transition equation, and therefore both x = +4/6/4 =+/6/2 are ‘square
root’ zeros of the original quadratic equation.



