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On Squares of the Solutions for a Polynomial Equation 
Ali Astaneh Ph.D(Lon),  Vancouver, B.C. 

 
Given a polynomial equation          

     … +          with real 
or complex coefficients, the main objective of this article is to construct a 
new polynomial equation         

     …+         whose   
roots are “squares” of the solutions of the original equation. As expected 
the coefficients of the second equations are to be expressed in terms of the 
coefficients of the original one. For convenience (as well as a good reason!), 
I will refer to the second equation as the “transit” equation for the first 
one. One reason being , if you are interested to find those solutions of the 

first equations that are square root    of non-complete square positive 
integers  , you can find positive integer roots of the transition equation, 
and consider   square root of them to be “square root” solutions of the 
original equation.  
 
As for how I ended up with the odd looking sigma in the following theorem, 
I might add I simply tried to find a system of n linear equations in terms of 
the n unknown coefficients   ’s and solve the system in terms of the 
original coefficients   ’s. To this end, I used the popular set of n relations 
that hold between the n zeros of a polynomial of degree n and its n 
coefficients               .  I simply grouped those relations in a 
way to enable me to solve for  ’s in terms of   ’s. This process will not 
appear in the proof, as I realized at the end that a proof of my formulation 
can be delivered by induction on n . Here is the formulation, 
 
Theorem [A. Astaneh] Let          

     … +           be a given 
polynomial equation with real or complex coefficients and set, 
 
          

 , 

             
                      

   
   ,   for           . 

 
Then roots of the “transit” equation         

     … +             
will be exactly squares of the roots of the original polynomial.  
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Note that, whenever in manipulations in the proof the coefficient    occurs 
we will consider it to be the leading coefficient of the original equation 
which means       This, for example occurs as a term of the sigma when 
      and        , as then the coefficient       becomes     .  

 
Proof: We prove the claimed assertion by induction on the degree   of the 
polynomial .The case     is obvious, because the polynomial whose root 
is the square of the only solution of the polynomial         is 
    

   , which means the relation           
  holds. 

Assume that the assertion holds for  , and consider an     degree 
polynomial equation  
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By the fundamental theorem of algebra, this equation has      real or 
complex roots. Therefore, in particular for some real or complex number  , 
the equation it can be factored as  
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Next, by induction hypothesis, the roots of the following equation are 
exactly squares of the roots of the original equation 
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If we know assume the roots of the polynomial  
                                           … +                      (4) 
are  squares of the solutions of  equation (1) , then we must show that 
            

 ,                                                                             (5) 

               
                      

   
   ,   for         . (6) 

To settle (5), since equations (3) and (4) have the same roots and the same 
leading coefficients 1, all other coefficients must be the same, in particular 
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which settles (5). And finally to show (6), once again considering that not 
only equations because (3) and (4) have the same coefficients, but also (1) 
and (2) have the same coefficients we have the following two relations 
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            ,       for           .    (8) 



 

 

3 

 

The proof will be complete if we show that the right hand sides of (6) and 
(7) are equal. Since the right hand side of (7) is  
 
         

               
                        

   

   

             
                    

   

   

 

 it is enough to show that for k n1 2, , ...,   we have, 
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The above relation will be established by considering that by (1) and (2) 
        ,         , and            . However, in order to 
avoid the appearance of an undefined coefficient of a1  it is necessary to 

isolate the first term of the sigma on the left. Also for a preliminary 
cancellation it helps to isolate the first term of the last sigma on the right, 
to get 
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The above equation is first simplified into 
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Then, it is further simplified into 
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Next, a change of index j i 1 in the sigma on the right will give rise into 
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Therefore the equation is reduced to 
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Next we will split the sigma involved into two sigmas, and get, 
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Again, upon change of index j i 1 in the sigma on the right we get 
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And finally we isolae the first term of the sigma on the left, and the last 
term of the sigma on the right , giving rise to difference of two identical 
sigmas that cancel. The equality to be shown will eventually turn into 
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which is a true relation.  Therefore the proof is complete. 
 
Remark The above Theorem can reduce the problem of finding the ‘square 
root’ zeros of a given polynomial         

     … +          with 
real or complex coefficients to that of finding positive roots of the 
“transition” polynomial equation         

     …+        , as 
seen in the following six examples. 

 
Example 1 The transition equation for the quadratic equation
  +x a x a2

1 0 0   reads as   (  ) 1

2X a a X a2

0 0

22 0    . 

Therefore, for the specific equation        x x2 2 4 0    the transition 
equation is    X X2 10 16 0   . Since the transition equation has roots 
X  2 8,   one can check that x   2 2,  and 2  are roots of the original 
equation. 
Observe in the event that equation   +x a x a2

1 0 0   has complex roots 

instead, the transition equation will have squares of those complex 
numbers as its roots. For example the roots of   x x2 6 13 0    are 
x i 3 2   , and the roots of the transition equation    X X2 10 169 0    are 
X i 5 12   , which are respective squares of the complex numbers 
x i 3 2   . 
 
Example 2 The transition equation for the cubic equation 
x a x a x a3

2
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1 0 0       +     reads as 

X a a X a a a X a3
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0 2 0

22 2 0     (    )   (    )     1

2 . To see a direct verification 
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of this assertion, we only need to observe the following three identities in 
terms of the roots x x x1 2 3, ,  of the original cubic equation, 
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Therefore, for the specific equation x x x3 22 2 2 2 2 8 0     ( ( ) )         

the transition equation is X X X3 214 56 64 0        . Since the latter 

equation has roots X  2 4, ,  and8 , one can check that x  2 2 2,  ,  and 2  
are roots of the original cubic equation. 
 
 
Example 3 The transition equation for the quartic equation 

x a x a x a x a4
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Therefore, for the specific equation x x x x4 3 22 7 3 2 12 0          the 
transition equation is X X X X4 3 216 85 186 144 0        . Since the latter 

equation has roots X  2 3 8, ,  and , one can see that x   2 3, , 2 2  and  
are roots of the original quartic equation. 
 
Example 4 The transition equation for the Hexatic equation  
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Therefore, for the specific equation x x x x x5 4 3 22 5 10 6 12 0           the 
transition equation is x x x x x5 4 3 214 77 208 276 144 0          . Since the 
transition equation has roots X  2 3,  , and 4, one can check that 

x    2 3,  2,  and  are roots of the original quintic equation. 
 
Example 5 The transition equation for the quintic equation  
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Example 6 An application of theorem 2 will show that the transition 

equation for the quartic equation a x a x a x a x a
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For example, in the case of the equation 2 2 3 3 04 3 2x x x x      the 

transition function will read as X X X X
4

8
3

4
2

48 576 0     . An application 
of the integral zero theorem will show that X = 6  is a (double) root of the 

transition equation, and therefore both x    6 4 6 2/ /  are ‘square 
root’ zeros of the original quadratic equation.  


