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To fix ideas, and in analytical geometric terms, given an horizontal
half line defined by, say y = 0, x < 0 and any oblique half line
passing through the point (1,1) with equation y —1 = p(x — 1),
1<x,(or l(x) =p(x—1)+1, 1 <x), aCalculus question arises
whether there exists an interpolating polynomial function whose
graph connects the two end points (0,0) and (1,1) of the half lines in
a sufficiently smooth manner. Technically speaking the question is
whether there exists a polynomial function y = P(x) such that the
piecewise function defined by

0 x<0
_JP(x) 0<x<1
fa(x) = 1(x) 1<x

Is an n times entirely differentiable function over the real number line?
The answer to this question is affirmative, and here goes the answer,

Proposition: For any positive integer n, the function

0 0<x

n

£.00 = {xm |1 +Z(—1)J’ [ (";”) _@2j-D]x-1) | 0<x<1

j=1
1 1<x

is an entirely n times differentiable function piecewise function,

n+j . : o
where ( j]> means the familiar number representing combination

of n + j objects taken j at atime.

This means the curve segment define by the polynomial in the middle
of the piecewise function defined above provides a curve segment to
patch up the horizontal line half line y =0, X <0 and the half slant
line ( through the point (1,1) ) ) defined by y = px+1—p,x>1
patches up the half lines in an n times smooth manner at the two
contact points.



Proof: | only need to remark that, obviously for each n = 1,2,3, ... the
graph of the above entirely defined function f_(X) does go/ cross

through the end points of the indicated half lines, that is :
f (X)=0for x<0 and f (X)=px+1-p for x>1.

Otherwise, the proof is accomplished by induction on ; and it is left
as an exercise to the interested reader! | should like to point out that
in the process of an inductive proof, a familiarity about identities
among combinations . C, for distinct positive integers n + j and j is

required.

The following 4 concrete Examples, can give a grasp of the analytic
geometrical aspects of the discussion. In all examples the left hand
half line is the negative part of the x-axis, but the half slant line on the
right are different. Until | find time to graphs of Examples 2-4 in my
ideal satisfaction, | am asking the reader in Examples 2-4 to ignore
the part of the straight line [(x) = p(x — 1) + 1 to the left of the point
(1,1), as well as the polynomial graph y = P(x) which is to the right of
the same point (1,1).

Example 1, For n=1 and p =-1, the function f (X) is,

0 x<0
fi(x) ={x2%(4 — 3x) 0<x<1
2—x 1<«x

> g=x —>piecewise(x <0,0,x < 1,4)c2 — 3x3,x <3,2 —x);
g ::xﬂpiecewise(x <0,0,x <1, 4% — 3x3,x <3,2— x)
> plot(g(x),x=-1.2.5);
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Example 2, For n=2 and p = 2, the function f, (X) is,

0 x<0
f,(x) =1x3(6x2—15x+10) O0<x<1
2x —1 1<x

> h:i=x —>piecewise(x <0,0,x < 1,)63(6)62 —15x+ lO),x <3,2x— 1);
3
h :=x—>piecewise(x <0,0,x < 1,)6(6x2 —15x+ 10) ,Xx<3,2x— 1)
> plot(h(x),x=-1.2.5);

Example 3, For n=3 and p = 2, the function f, (X) is,

0 X<0
f,(x) =<¢x* (-10x° + 34x* —40x +17) O<x<l
2x—1 1<x

> ki=x —>piecewise(x <0,0,x <1, 17x* —40x° +34:° — 1Ox7,x <3,2x— 1);
k::x—>piecewise(x <0,0,x <1, 1724 —40x° + 3425 — 10x7,x <3,2x— 1)
> plot(k(x),x=-1.2.5);



[

Example 4, For n =4 and p =5, the function f,(x) is,

0 x<0
f2(x) ={x5(10x% —30x%2 +30x+1) O0<x<l1
5x — 4 1<x

> wi=x —>piecewise(x <0,0,x < 1,x5(10x3 — 307 +34x+ 1),x <3,5x— 4);
5
w :=x—>piecewise<x <0,0,x < 1,x(10x3 —30x% +34x + 1) ,x<3,5x — 4)
> plot(w(x),x=-1.2.5);
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