

An Infinite Sequence of Twin Composite Numbers

Ali Astaneh, Vancouver, BC

According to Underwood Dudley in his Number Theory Textbook, in 1509 DeBouvelles claimed that for all natural numbers n one or both of the twin numbers $6n - 1$ and $6n + 1$ are prime numbers. Here by twin numbers we mean consecutive odd integers. Dudley then leaves the following exercise for verification:

Exercise

- (a) Show that DeBouvelles was wrong.
- (b) Moreover, show that there are infinitely many numbers n for which both $6n - 1$ and $6n + 1$ are composite numbers

Since the superior part (b) of the Exercise is a reminiscent of the still popular and ancient open "Twin Prime" problem, I became interested to verify part (b), by figuring out the following twin composite sequence,

Let k be any positive integer, and set $n = 36(5k + 2)^2$. Then for each such n both consecutive (twin) numbers

$$6n - 1 = (30k + 11)(30k + 13) \quad \text{and} \quad 6n + 1 = 5(180k^2 + 144k + 29)$$

are composite. Moreover, if you wish the second integer $6n + 1$ to look a little more composite than above choose $k = 29j$ for $j = 1, 2, \dots$, to get

$$6n - 1 = (870j + 11)(870j + 13) \quad \text{and}$$

$$6n + 1 = 5(29)(151380j^2 + 4176j + 1).$$

You could even make the first integer to look more composite by setting $j = 11i$ or $= 13i$, $i = 1, 2, \dots$. Then your pair of sequence of composite twin numbers

- (A) $6n - 1 = 11(9570i + 1)(9570i + 13)$
 $6n + 1 = 5(29)(151380j^2 + 4176j + 1)$, or
- (B) $6n - 1 = 13(9570i + 1)(9570i + 1)$
 $6n + 1 = 5(29)(151380j^2 + 4176j + 1)$.