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As in the previous Article 6, this article might also have been entitled “Solutions of
the Diophantine equations x> + y3 = pz and x> — y3 = pz for prime number p",
simply because the two statements are equivalent; if (x, y) is a possible pair of
integers satisfying the any of the equations for a given integer z, then the pair (x, y)
satisfies the corresponding congruency. However, it would be more common stick to
the terminology in the title, as to find the solutions to the congruences we will be
using are a couple facts for congruency of integers. In this regard we recall if p is an

odd prime number, then the set Z of integers is partitioned into p disjoint classes
integersas Z = [0] U,[1] U ...U [p — 1], where foreachi = 1,2, ..., (p — 1) the
class [i] consists of all integers [i] = {i + kp: k € Z}. Therefore, as expected, here all
solutions of the congruences x® + y3 = 0 (mod p) and x® — y3 = 0 (mod p) will be
obtained in terms of “class solutions” (x,y) = ([ul,[v]),u,v € Z.

We will first deal with the congruency x3 + y3 = 0 (mod p). As we will shortly see,
in general, depending on the prime number p, the congruency x3 + y3 = 0 (mod p)
will have only trivial class solutions of the form (x,y) = ([u], [—u]),u € Z, or else
apart from the trivial solutions the congruency also has a further 2(p — 1) infinitely
more “sequences” of class solutions as described in Theorem 1 of the article.

Note that the trivial solution classes in particular include the class solution ([0], [0]),
meaning all ordered pairs of the (up, vp),u,v € Z .

In providing description of the non-trivial class solutions of the congruency

x3 + y3 = 0 (mod p) we need to recall the following Lemma (proved as Lemma 2
in Article 6), keeping in mind that any odd prime number is either of the form p =
3k—1,o0relsep=3k+1,,k=1,2,...

Lemma : Give an odd prime number p the integer —3 is a quadratic residue (mod p)
if and only if p is of the form p = 3k + 1.

Indeed, since the congruency x3 + y3 = 0 (mod p) is equivalent to

(x +y)(x* — xy + y*) = 0 (mod p),
and since the option (x + y) = 0 (mod p) only leads to the trivial class solutions
described earlier, we only need to deal with the potential class solutions of the second
option (x2 — xy + y?) = 0 (mod p). To this end, we can assume without loss of
generality that y is even, say y = 2n, otherwisewesetX =P —x,Y =P —yand
deal with the congruency X3 + Y3 = 0 (mod p) where Y is even.
Assuming y = 2n, the congruency (x? — xy + y2) = 0 (mod p) can be expressed as

(x —n)? = -3n?(modp). (1)

Now we bring the Theorem describing all class solutions of the congruency
x3 + y3 = 0 (mod p). Not that for part (b) of the Theorem 1 bellow we use the

above Lemma, and assume that when p = 3k + 1 there exists an integer 1 < r < pT_l
for which the congruency r? = —3 (mod p) holds.



Theorem 1(Astaneh) Let p be an odd prime number, and consider the congruency
x3 + y3 = 0 (mod p), then;

(@ Ifp=3k—-1,k =1,2,...; then the only class solutions of the congruency are the
trivial ones of the form ([u], [—u]), u € Z . Note that trivial class solutions
([0],[0D) = {(up.vp):u,v € Z} is included here.

O Ifp=3k+1,k=1,2,..,then apart from the trivial class solutions ([u], [—u]),
the congruency has a remaining 2(p — 1) “sequences” of class solutions defined

in terms of the specific integers 1 < r < pT_l, where r is the quadratic root

(mod p) of the —3, that is 72 = —3 (mod p). As for class solutions (x, y) in
which y is even, say y = 2n, we have class solutions are given by,

0  XY)=((kp+G+Dnl,[2nD)n=12,.. ”T‘l;k eZ

(i) &Y)=kp =@ =Dnl,[2nD,n=1,2,...57 k€ Z
And for class solutions (x, y) with odd integer y, the solutions are given by,
iii X,Y)=((kp+ (@ +1Dn],[p—-2nh,n=1,2,.., pT_l; k e

(v, &Y)=(kp—@—Dnl,lp-2n)n=12.,"kel
As observed here, class solutions (i)-(iv) above produce a total of 2(p — 1)
“sequences” of non-trivial class solutions for the congruency x3 + y3 = 0 (mod p).

Note: Since the congruency x3 + y3 = 0 (mod p) is symmetric in terms of x and v,
from number theoretic point of view it only makes sense not to distinguish between
solutions (x, y) and (y, x). Keeping this convention in mind, Theorem 1 describes all
existing solutions of the congruency under the discussion.

Proof: (a) When p = 3k — 1,k = 1, 2, ... the congruency (1) preceding Theorem,
(x —n)? = =3 n%(mod p)
has no solution, because by Lemma 2, the integer —3 isn’t a quadratic residue
(mod p). Therefore, the congruency X3 + Y3 = 0 (mod p) can only have the trivial
class solutions.
(B)Whenp =3k -1,k =1,2,..., first assuming that in the congruency
(x2 —xy + y?%) = 0 (mod p) the integer y is even, y = 2n, and considering that any
solution belongs to a class solution since any solution ([x], [y]) with1 <y <p—1,

the integer n can only take valuesn = 1,2, ..., pz;l. Now since there is an integer
1<r< pT_l satisfying 2 = —3 (mod p), the congruency (1) implies
(x —n)? = =3 n%(mod p) => (x —n)? = (rn)?*(mod p) =>
[(x —n)? — (rn)?] = 0(mod p) => [x — (r + Dn][x + (r — 1)n] = 0(mod p).
Therefore either x — (r + 1)n = 0(mod p), implying x = kp + (r + 1)n, k € Z, or
x + (r — n = 0(mod p), implying x = kp — (r — 1)n, k € Z . Now considering
y = 2n, the first case produces class solutions

) Gy =kp+(+Dn][2n)n=12,., 2% k€eL,
and the second case produces class solutions

(i) (¥ =(kp—C@—Dn],[2n)n=12,.. 25 kel .
Now, if y is odd, then p — y is even, and substituting this in (i) and (ii) above we get
the rest of the class solutions as



i)  (0y)=(kp+@+Dn],[p-2n)n=12.,"> kel

) oy =kp=@=Dnl,lp-20Dn=12,..55kel.
And the proof of the Theorem is complete.
Here are three examples, first one regarding part (a) and the last two for part (b).

Example 1 For the congruency x3 + y3 = 0 (mod 11), sincep = 11 = 4 x 3 — 1,
by part (a) of the Theorem the only class solutions of the congruency are the trivial
ones ([u],[-u]),u € Z.

Example 2 For the congruency x3 + y3 = 0 (mod 7), since p = 2 X 3 + 1, by part
(b) of the Theorem apart from trivial class solutions ([u],[—u]), u € Z, we also have
2(p — 1) = 12 sequences of class solutions, each involving the quadratic root r of the
integer —3 (mod 7) which happens to be r = 2, as 22 = —3 (mod 7). By part (b) of
the Theorem the remaining class solutions are as follows,

(i) (x,y) = ([7k + 3n],[2n]),n=1,2,3; k € Z,

(ii) (x,y) =7k —n],[2n]),n=1,2,3;k e Z .

iii (x,y) =7k +3n],[7—-2n]),n=1,23;k €Z
(iv) (x,y)={7k—n],[7-2n]),n=1,2,3;k€Z .

Example 3 For the congruency x3 + y3 = 0 (mod 13), since p = 4 x 3 + 1, again
by part (b) of the Theorem apart from trivial class solutions ([u], [—u]), u € Z, we
also have 2(p — 1) = 24 sequences of class solutions, each involving the quadratic
root r of the integer —3 (mod 13) which happens to r = 6, as 6> = —3 (mod 13).
Again, by part (b) of the Theorem the remaining class solutions are as follows,

(i) (x,y) = ([13k + 7n],[2n]),n=1,2,3,4,5,6;k € Z,

(i) (x,y) = ([13k —5n],[2n]),n=1,2,3,4,5,6 ;k € Z .
(i)  (x,y) =13k + 7n],[13—-2n]),n=1,2,3,4,5,6 ;k € Z
(iv) (x,y) =([13k—-5n],[13—-2n]),n=1,2,3,4,5,6;;k € Z .

Now we deal with the similar congruency x3 —y3 = 0 (mod p) in the title of the
article. As one might expect, we will again make use Lemma prior to Theorem 1 to find
the “sequences” of class solutions of this congruency as well. More precisely keeping
in mind that in part (b) of the following Theorem 2 the integer —3 is a quadratic residue
(mod p), we first note that and the congruency x3 — y3 = 0 (mod p) is equivalent to

(x —y)(x? + xy + y2) = 0 (mod p),
and the option (x — y) = 0 (mod p) only produces trivial class solutions ([u], [u]),
u € Z . Again to find solutions for the second option (x% + xy + y?) = 0 (mod p),
without loss of generality we can assume that 1< y < p — 1 iseven, say y = 2n,
otherwise we set X = P — x, Y = P — y and deal with the congruency
X? + XY +Y? = 0 (mod p) where Y is even. Now, assuming that y = 2n, the
congruency (x2 + xy + y?) = 0 (mod p) can be expressed as

(x +n)? = =3 n%(mod p). (2)

Again, when —3 is a quadratic residue (mod p), all class solutions of the congruency
(x2 + xy + y2) = 0 (mod p) will be expressed in terms of the integer 1 < r < 222

2
satisfying r2 = —3 (mod p), as (2) impliesx =rn—norx = —rn —n.



As observed here, class solutions (i)-(iv) above produce a total of 2(p — 1)
“sequences” of non-trivial class solutions for the congruency x3 — y3 = 0 (mod p).

Again note since a pair of integers (x, y) is a solution of the congruency
x3 —y3 =0 (mod p) if and only if (y, x) is, we distinguish between solutions (x, y)
and (y, x). Keeping this convention in mind, ow bring the second Theorem.

Theorem 2 (Astaneh) Let p bean odd prime number, and consider the congruency
x® —y3® = 0 (mod p), then;
(@ Ifp=3k—-1,k=1,2,..;then the only class solutions of the congruency are
the trivial ones of the form ([u], [u]), u € Z . Note that class solutions
([0],[0]) = {(up.vp):u,v € Z} is included here.

() fp=3k+1,k=1,2,..,then apart from the trivial class solutions
([u], [u]), the congruency has a remaining 2(p — 1) sequences of class

solutions defined in terms of the integer 1 < r < pT_l where r is the quadratic
root (mod p) of the —3, that is 72 = —3 (mod p). First, for class solutions
(x,y) in which y is even, say y = 2n, class solutions are given by

0 &Y =kp+0-Dnl,2n])n=1,2,.,2keZ

(i) &Y)=(kp—@+Dnl,[2n])n=1,2,...2= kel

Secondly, class solutions (x, y) for which y is odd are given by
(i) &Y)=kp+0—Dnl,[p-2n)n=12.,2keZ
iv) &V =(kp—@+Dnl,lp-2nDhn=12.,25 ke

Again we observe that (i)-(iv) above produce a total of 2(p — 1) “sequences” of non-
trivial class solutions for the congruency x* — y3 = 0 (mod p).

Note: Since the congruency x3 + y3 = 0 (mod p) is symmetric in terms of x and y
it only makes sense not to distinguish between solutions (x, y) and (y, x). Keeping
this in mind the above Theorem 2 describes all existing solutions of the congruency.

Proof: (a) Whenp = 3k — 1,k = 1, 2, ... the congruency (1) preceding Theorem,
(x + n)? = =3 n?(mod p)

has no solution, because by Lemma 2, the integer —3 isn’t a quadratic residue
(mod p). Therefore, the congruency X3 + Y3 = 0 (mod p) can only have the trivial
class solutions.

(b) Whenp =3k + 1,k = 1,2, ..., first assuming that in the congruency
(x2 + xy + y%) = 0 (mod p) the integer y is even, y = 2n, we first try to find clss
solutions of the form ([x], [2n]) wheren =1, 2, ..., pT_l. Now since there is an integer
1<r< pT_l satisfying r2 = —3 (mod p), the congruency (1) implies
(x + n)? = =3 n%(mod p) => (x + n)? = (rn)?(mod p) =>
[(x + n)? — (rn)?] = 0(mod p) => [x — (r — D)n][x + (r + 1)n] = 0(mod p).
Therefore either x — (r — 1)n = 0(mod p), implying x = kp + (r — 1)n, k € Z, or
else x + (r + 1)n = 0(mod p), implying x = kp — (r + 1)n,k € Z . Now
considering y = 2n, the first case produces class solutions

0) (x,y) =(lkp + r — Dn],[2n]),n=1,2,.., p7—1; k eZ,

and the second case produces class solutions

4



(i) Gy =kp— (@ +Dnl,[20),n=12,..keZ.
Now, if y is odd, then p — y is even, and substituting this in (i) and (ii) above we get
the rest of the class solutions as
(i) Coy)=(kp+ @ —Dnl,[p-2n)n=12,..,% ke
Z
iv) @y =kp—C+Dnl,[p-2n)n=12.,2ke
Z .
And the proof of the Theorem is complete.
Here are three examples, first one regarding part (a) and the last two for part (b).

Example 1 For the congruency x3 — y3 = 0 (mod 11),sincep = 11 = 4 x 3 — 1,
by part (a) of the Theorem 2 the only class solutions of the congruency are the trivial
ones ([u],[u]), u € Z.

Example 2 For the congruency x3 — y3 = 0 (mod 7), since p = 2 X 3 + 1, by part
(b) of the Theorem 2 apart from trivial class solutions ([u], [u]), u € Z, we also have
2(p — 1) = 12 sequences of class solutions, each involving the quadratic root r of the
integer —3 (mod 7) which happens to be r = 2, as 22 = —3 (mod 7). By part (b) of
the Theorem the remaining class solutions are as follows,

Q) (x,y) = ([7k +n],[2n]),n=1,2,3;k € Z,

(i) (x,y) =7k —3n],[2n]),n=1,2,3;k e Z .

@iii)  (x,y)=(7k+n],[7-2n]),n=1,23;k e’

(iv) (x,y) =(7k —3n],[7-2n]),n=1,2,3;k €Z .

Example 3 For the congruency x3 — y3 = 0 (mod 13), since p = 4 x 3 + 1, again
by part (b) of the Theorem 2 apart from trivial class solutions ([u], [u]), u € Z, we
also have 2(p — 1) = 24 sequences of class solutions, each involving the quadratic
root r of the integer —3 (mod 13) which happens to r = 6, as 6> = —3 (mod 13).
Again, by part (b) of the Theorem the remaining class solutions are as follows,

0] (x,y) = ([13k + 5n],[2n]),n=1,2,3,4,5,6;k € Z,

(i) (x,y) = ([13k — 7n],[2n]),n=1,2,3,4,5,6 ;k € Z .

@iii)  (x,y) =13k +5n],[13—-2n]),n=1,2,3,4,5,6 ;k € Z

(iv) (x,y)=(13k—-7n],[13-2n]),n=1,2,3,4,5,6 ;k € Z .

The last theorem of the article describes class solutions for the last congruency
x — y® = 0 (mod p) in the title.

Theorem 3 (Astaneh) Let p bean odd prime number, and consider the congruency
x% — y® = 0 (mod p), then;

(@ Ifp=3k—-1,k=1,2,..;then the only class solutions of the congruency are
the trivial ones of the form ([u], [u]), u € Z ([u],[-u]),u € Z.

M Ifp=3k+1,k=1,2,..,then apart from the trivial class solutions of the
form ([u], [u]), u € Z ([u],[—u]), u € Z, the remaining class solutions of the
congruency are all class solutions listed as (i)-(iv) in part (b) of Theorem 1 plus
all class solutions listed as (i)-(iv) in part (b) of Theorem 2.

Proof: (a) Simply because the congruency x® — y® = 0 (mod p) is equivalent to the
system of congruences consisting of the two congruences x> + y* = 0 (mod p) and
x3 —y3 =0 (mod p).

(b) Fe reason as in the proof of part (a) .



