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Solutions of the Congrunces 𝒙𝟑 + 𝒚𝟑 ≡ 𝟎(𝒎𝒐𝒅 𝒑), 

 𝒙𝟑 − 𝒚𝟑 ≡ 𝟎(𝒎𝒐𝒅 𝒑), and 𝒙𝟔 − 𝒚𝟔 ≡ 𝟎(𝒎𝒐𝒅 𝒑) 

 for a prime number 𝒑  
Ali Astaneh,PD(Lon), Vancouver BC, Canada 

 
As in the previous Article 6, this article might also have been entitled “Solutions of 

the Diophantine equations 𝑥3 + 𝑦3 = 𝑝𝑧 and 𝑥3 − 𝑦3 = 𝑝𝑧 for prime number 𝑝", 

simply because the two statements are equivalent; if (𝑥, 𝑦) is a possible pair of 

integers satisfying the any of the equations for a given integer 𝑧, then the pair (𝑥, 𝑦)  

satisfies the corresponding congruency. However, it would be more common stick to 

the terminology in the title, as to find the solutions to the congruences we will be 

using are a couple facts for congruency of integers. In this regard we recall if 𝑝 is an 

odd prime number, then the set ℤ of integers is partitioned into 𝑝 disjoint classes 

integers as  ℤ = [0] ∪,[1] ∪ … ∪ [𝑝 − 1], where for each 𝑖 = 1, 2, … , (𝑝 − 1) the 

class [𝑖] consists of all integers [𝑖] = {𝑖 + 𝑘𝑝: 𝑘 ∈ ℤ}. Therefore, as expected, here all  

solutions of the congruences 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) and 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) will be 

obtained in terms of “class solutions” (𝑥, 𝑦) = ([𝑢], [𝑣]), 𝑢, 𝑣 ∈ ℤ . 

We will first deal with the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝). As we will shortly see, 

in general, depending on the prime number 𝑝, the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) 

will have only trivial class solutions of the form (𝑥, 𝑦) = ([𝑢], [−𝑢]), 𝑢 ∈ ℤ, or else 

apart from the trivial solutions the congruency also has a further 2(𝑝 − 1) infinitely 

more “sequences” of class solutions as described in Theorem 1 of the article. 

Note that the trivial solution classes in particular include the class solution ([0], [0]), 

meaning all ordered pairs of the (𝑢𝑝, 𝑣𝑝), 𝑢, 𝑣 ∈ ℤ .   

 

In providing description of the non-trivial class solutions of the congruency 

 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) we need to recall the following Lemma (proved as Lemma 2 

in Article 6), keeping in mind that any odd prime number is either of the form 𝑝 =
3𝑘 − 1, or else 𝑝 = 3𝑘 + 1, , 𝑘 = 1, 2, … . 

 

Lemma : Give an odd prime number 𝑝 the integer −3 is a quadratic residue (𝑚𝑜𝑑 𝑝) 

if and only if 𝑝 is of the form 𝑝 = 3𝑘 + 1. 

 

Indeed, since the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) is equivalent to  

(𝑥 + 𝑦)(𝑥2 − 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝), 

and since the option (𝑥 + 𝑦) ≡ 0 (𝑚𝑜𝑑 𝑝) only leads to the trivial class solutions 

described earlier, we only need to deal with the potential class solutions of the second 

option (𝑥2 − 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝). To this end, we can assume without loss of 

generality that 𝑦 is even, say 𝑦 = 2𝑛, otherwise we set 𝑋 = 𝑃 − 𝑥, 𝑌 = 𝑃 − 𝑦 and 

deal with the congruency 𝑋3 + 𝑌3 ≡ 0 (𝑚𝑜𝑑 𝑝) where 𝑌 is even.  

Assuming 𝑦 = 2𝑛, the congruency (𝑥2 − 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝) can be expressed as  

(𝑥 − 𝑛)2 ≡ −3 𝑛2(𝑚𝑜𝑑 𝑝).      (1) 

Now we bring the Theorem describing all class solutions of the congruency 

𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝). Not that for part (b) of the Theorem 1 bellow we use the 

above Lemma, and assume that when 𝑝 = 3𝑘 + 1 there exists an integer 1 ≤ 𝑟 ≤
𝑝−1

2
 

for which the congruency 𝑟2 ≡ −3 (𝑚𝑜𝑑 𝑝) holds. 
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Theorem 1(Astaneh) Let 𝑝 be an odd prime number, and consider the congruency 

𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝), then; 

  

(a) If 𝑝 = 3𝑘 − 1, 𝑘 = 1, 2, … ; then the only class solutions of the congruency are the 

trivial ones of the form ([𝑢], [−𝑢]), 𝑢 ∈ ℤ . Note that trivial class solutions  

([0], [0]) = {(𝑢𝑝. 𝑣𝑝): 𝑢, 𝑣 ∈ ℤ} is included here. 

 

(b) If 𝑝 = 3𝑘 + 1, 𝑘 = 1, 2, … , then apart from the trivial class solutions ([𝑢], [−𝑢]), 

the congruency has a remaining 2(𝑝 − 1) “sequences” of class solutions defined 

in terms of the specific integers 1 ≤ 𝑟 ≤
𝑝−1

2
,  where 𝑟 is the quadratic root 

(𝑚𝑜𝑑 𝑝) of the −3, that is 𝑟2 ≡ −3 (𝑚𝑜𝑑 𝑝). As for class solutions (𝑥, 𝑦) in 

which 𝑦 is even, say 𝑦 = 2𝑛, we have class solutions are given by,  

(i) (𝑋, 𝑌) = ([𝑘𝑝 + (𝑟 + 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ    

(ii) (𝑋, 𝑌) = ([𝑘𝑝 − (𝑟 − 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ   

       And for class solutions (𝑥, 𝑦) with odd integer 𝑦, the solutions are given by,  

(iii) (𝑋, 𝑌) = ([𝑘𝑝 + (𝑟 + 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ    

(iv)      (𝑋, 𝑌) = ([𝑘𝑝 − (𝑟 − 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ   

As observed here, class solutions (i)-(iv) above produce a total of 2(𝑝 − 1) 

“sequences” of non-trivial class solutions for the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝). 

 

Note: Since the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) is symmetric in terms of  𝑥  and 𝑦, 

from number theoretic point of view it only makes sense not to distinguish between 

solutions (𝑥, 𝑦) and (𝑦, 𝑥). Keeping this convention in mind, Theorem 1 describes all 

existing solutions of the congruency under the discussion. 

 

Proof: (a) When 𝑝 = 3𝑘 − 1, 𝑘 = 1, 2, … the congruency (1) preceding Theorem,    

(𝑥 − 𝑛)2 ≡ −3 𝑛2(𝑚𝑜𝑑 𝑝) 

has no solution, because by Lemma 2, the integer −3 isn’t a quadratic residue 

(𝑚𝑜𝑑 𝑝). Therefore, the congruency 𝑋3 + 𝑌3 ≡ 0 (𝑚𝑜𝑑 𝑝) can only have the trivial 

class solutions. 

(b)When 𝑝 = 3𝑘 − 1, 𝑘 = 1, 2, … , first assuming that in the congruency 

(𝑥2 − 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝) the integer 𝑦 is even, 𝑦 = 2𝑛, and considering that any 

solution belongs to a class solution since any solution ([𝑥], [𝑦]) with 1 ≤ 𝑦 ≤ 𝑝 − 1, 

the integer 𝑛 can only take values 𝑛 = 1, 2, …, 
𝑝−1

2
. Now since there is an integer 

1 ≤ 𝑟 ≤
𝑝−1

2
  satisfying 𝑟2 ≡ −3 (𝑚𝑜𝑑 𝑝), the congruency (1) implies 

 (𝑥 − 𝑛)2 ≡ −3 𝑛2(𝑚𝑜𝑑 𝑝) => (𝑥 − 𝑛)2 ≡ (𝑟𝑛)2(𝑚𝑜𝑑 𝑝) => 

[(𝑥 − 𝑛)2 − (𝑟𝑛)2] ≡ 0(𝑚𝑜𝑑 𝑝) => [𝑥 − (𝑟 + 1)𝑛][𝑥 + (𝑟 − 1)𝑛] ≡ 0(𝑚𝑜𝑑 𝑝). 

Therefore either 𝑥 − (𝑟 + 1)𝑛 ≡ 0(𝑚𝑜𝑑 𝑝), implying 𝑥 = 𝑘𝑝 + (𝑟 + 1)𝑛, 𝑘 ∈ ℤ, or 

𝑥 + (𝑟 − 1)𝑛 ≡ 0(𝑚𝑜𝑑 𝑝), implying 𝑥 = 𝑘𝑝 − (𝑟 − 1)𝑛, 𝑘 ∈ ℤ . Now considering 

𝑦 = 2𝑛 , the first case produces class solutions  

(i) (𝑥, 𝑦) = ([𝑘𝑝 + (𝑟 + 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ,  

and the second case produces class solutions  

(ii) (𝑥, 𝑦) = ([𝑘𝑝 − (𝑟 − 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ  . 

Now, if 𝑦 is odd, then 𝑝 − 𝑦 is even, and substituting this in (i) and (ii) above we get 

the rest of the class solutions as 
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(iii) (𝑥, 𝑦) = ([𝑘𝑝 + (𝑟 + 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ    

(iv)      (𝑥, 𝑦) = ([𝑘𝑝 − (𝑟 − 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ  . 

And the proof of the Theorem is complete. 

Here are three examples, first one regarding part (a) and the last two for part (b). 

 

Example 1 For the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 11), since 𝑝 = 11 = 4 × 3 − 1, 

by part (a) of the Theorem the only class solutions of the congruency are the trivial 

ones ([𝑢], [−𝑢]), 𝑢 ∈ ℤ .  
 

Example 2 For the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 7), since 𝑝 = 2 × 3 + 1, by part 

(b) of the Theorem apart from trivial class solutions ([𝑢], [−𝑢]), 𝑢 ∈ ℤ, we also have 

2(𝑝 − 1) = 12 sequences of class solutions, each involving the quadratic root 𝑟 of the 

integer −3 (𝑚𝑜𝑑 7) which happens to be 𝑟 = 2, as 22 ≡  −3 (𝑚𝑜𝑑 7). By part (b) of 

the Theorem the remaining class solutions are as follows, 

(i) (𝑥, 𝑦) = ([7𝑘 + 3𝑛] , [2𝑛]), 𝑛 = 1, 2, 3; 𝑘 ∈ ℤ,  

(ii) (𝑥, 𝑦) = ([7𝑘 − 𝑛] , [2𝑛]), 𝑛 = 1, 2, 3 ; 𝑘 ∈ ℤ  . 
(iii) (𝑥, 𝑦) = ([7𝑘 + 3𝑛] , [7 − 2𝑛]), 𝑛 = 1, 2,3 ; 𝑘 ∈ ℤ    
(iv)      (𝑥, 𝑦) = ([7𝑘 − 𝑛] , [7 − 2𝑛]), 𝑛 = 1, 2, 3 ; 𝑘 ∈ ℤ  . 

 

Example 3 For the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 13), since 𝑝 = 4 × 3 + 1, again 

by part (b) of the Theorem apart from trivial class solutions ([𝑢], [−𝑢]), 𝑢 ∈ ℤ, we 

also have 2(𝑝 − 1) = 24 sequences of class solutions, each involving the quadratic 

root 𝑟 of the integer −3 (𝑚𝑜𝑑 13) which happens to 𝑟 = 6, as 62 ≡  −3 (𝑚𝑜𝑑 13). 

Again, by part (b) of the Theorem the remaining class solutions are as follows, 

(i) (𝑥, 𝑦) = ([13𝑘 + 7𝑛] , [2𝑛]), 𝑛 = 1, 2, 3, 4, 5, 6; 𝑘 ∈ ℤ,  

(ii) (𝑥, 𝑦) = ([13𝑘 − 5𝑛] , [2𝑛]), 𝑛 = 1, 2, 3, 4, 5, 6 ; 𝑘 ∈ ℤ  . 
(iii) (𝑥, 𝑦) = ([13𝑘 + 7𝑛] , [13 − 2𝑛]), 𝑛 = 1, 2,3, 4, 5, 6 ; 𝑘 ∈ ℤ    
(iv)      (𝑥, 𝑦) = ([13𝑘 − 5𝑛] , [13 − 2𝑛]), 𝑛 = 1, 2, 3, 4, 5, 6 ; 𝑘 ∈ ℤ  . 

 

Now we deal with the similar congruency 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) in the title of the 

article. As one might expect, we will again make use Lemma prior to Theorem 1 to find 

the “sequences” of class solutions of this congruency as well. More precisely keeping 

in mind that in part (b) of the following Theorem 2 the integer −3 is a quadratic residue 

(𝑚𝑜𝑑 𝑝), we first note that and the congruency 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) is equivalent to  

(𝑥 − 𝑦)(𝑥2 + 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝), 

and the option (𝑥 − 𝑦) ≡ 0 (𝑚𝑜𝑑 𝑝) only produces trivial class solutions ([𝑢], [𝑢]), 

𝑢 ∈ ℤ . Again to find solutions for the second option (𝑥2 + 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝), 

without loss of generality we can assume that 1≤ 𝑦 ≤ 𝑝 − 1 is even, say 𝑦 = 2𝑛, 

otherwise we set 𝑋 = 𝑃 − 𝑥, 𝑌 = 𝑃 − 𝑦 and deal with the congruency 

𝑋2 + 𝑋𝑌 + 𝑌2 ≡ 0 (𝑚𝑜𝑑 𝑝) where 𝑌 is even. Now, assuming that 𝑦 = 2𝑛, the 

congruency (𝑥2 + 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝) can be expressed as  

(𝑥 + 𝑛)2 ≡ −3 𝑛2(𝑚𝑜𝑑 𝑝).      (2) 

Again, when −3 is a quadratic residue (𝑚𝑜𝑑 𝑝), all class solutions of the congruency 

(𝑥2 + 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝) will be expressed in terms of the integer 1 ≤ 𝑟 ≤
𝑝−1

2
 

satisfying   𝑟2 ≡ −3 (𝑚𝑜𝑑 𝑝), as (2) implies 𝑥 = 𝑟𝑛 − 𝑛 or 𝑥 = −𝑟𝑛 − 𝑛. 
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As observed here, class solutions (i)-(iv) above produce a total of 2(𝑝 − 1) 

“sequences” of non-trivial class solutions for the congruency 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝). 

 

Again note since a pair of integers (𝑥, 𝑦) is a solution of the congruency  

𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) if and only if (𝑦, 𝑥) is, we distinguish between solutions (𝑥, 𝑦) 

and (𝑦, 𝑥). Keeping this convention in mind, ow bring the second Theorem. 

 

Theorem 2 (Astaneh) Let 𝑝 bean odd prime number, and consider the congruency 

𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝), then; 

(a)  If 𝑝 = 3𝑘 − 1, 𝑘 = 1, 2, … ; then the only class solutions of the congruency are 

the trivial ones of the form ([𝑢], [𝑢]), 𝑢 ∈ ℤ . Note that class solutions  

      ([0], [0]) = {(𝑢𝑝. 𝑣𝑝): 𝑢, 𝑣 ∈ ℤ} is included here. 

 

(b)  If 𝑝 = 3𝑘 + 1, 𝑘 = 1, 2, … , then apart from the trivial class solutions 

([𝑢], [𝑢]), the congruency has a remaining 2(𝑝 − 1) sequences of class 

solutions defined in terms of the integer 1 ≤ 𝑟 ≤
𝑝−1

2
  where 𝑟 is the quadratic 

root (𝑚𝑜𝑑 𝑝) of the −3, that is 𝑟2 ≡ −3 (𝑚𝑜𝑑 𝑝). First, for class solutions 
(𝑥, 𝑦) in which 𝑦 is even, say 𝑦 = 2𝑛, class solutions are given by  

(i) (𝑋, 𝑌) = ([𝑘𝑝 + (𝑟 − 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ    

(ii) (𝑋, 𝑌) = ([𝑘𝑝 − (𝑟 + 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ   

Secondly, class solutions (𝑥, 𝑦) for which 𝑦 is odd are given by  

(iii) (𝑋, 𝑌) = ([𝑘𝑝 + (𝑟 − 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ    

(iv) (𝑋, 𝑌) = ([𝑘𝑝 − (𝑟 + 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ   

Again we observe that (i)-(iv) above produce a total of 2(𝑝 − 1) “sequences” of non-

trivial class solutions for the congruency 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝). 

 

Note: Since the congruency 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) is symmetric in terms of  𝑥  and 𝑦 

it only makes sense not to distinguish between solutions (𝑥, 𝑦) and (𝑦, 𝑥). Keeping 

this in mind the above Theorem 2 describes all existing solutions of the congruency. 

 

Proof: (a) When 𝑝 = 3𝑘 − 1, 𝑘 = 1, 2, … the congruency (1) preceding Theorem,    

(𝑥 + 𝑛)2 ≡ −3 𝑛2(𝑚𝑜𝑑 𝑝) 

has no solution, because by Lemma 2, the integer −3 isn’t a quadratic residue 

(𝑚𝑜𝑑 𝑝). Therefore, the congruency 𝑋3 + 𝑌3 ≡ 0 (𝑚𝑜𝑑 𝑝) can only have the trivial 

class solutions. 

(b) When 𝑝 = 3𝑘 + 1, 𝑘 = 1, 2, … , first assuming that in the congruency 

(𝑥2 + 𝑥𝑦 + 𝑦2) ≡ 0 (𝑚𝑜𝑑 𝑝) the integer 𝑦 is even, 𝑦 = 2𝑛, we first try to find clss 

solutions of the form ([𝑥], [2𝑛]) where 𝑛 = 1, 2, …, 
𝑝−1

2
. Now since there is an integer 

1 ≤ 𝑟 ≤
𝑝−1

2
  satisfying 𝑟2 ≡ −3 (𝑚𝑜𝑑 𝑝), the congruency (1) implies 

 (𝑥 + 𝑛)2 ≡ −3 𝑛2(𝑚𝑜𝑑 𝑝) => (𝑥 + 𝑛)2 ≡ (𝑟𝑛)2(𝑚𝑜𝑑 𝑝) => 

[(𝑥 + 𝑛)2 − (𝑟𝑛)2] ≡ 0(𝑚𝑜𝑑 𝑝) => [𝑥 − (𝑟 − 1)𝑛][𝑥 + (𝑟 + 1)𝑛] ≡ 0(𝑚𝑜𝑑 𝑝). 

Therefore either 𝑥 − (𝑟 − 1)𝑛 ≡ 0(𝑚𝑜𝑑 𝑝), implying 𝑥 = 𝑘𝑝 + (𝑟 − 1)𝑛, 𝑘 ∈ ℤ, or 

else 𝑥 + (𝑟 + 1)𝑛 ≡ 0(𝑚𝑜𝑑 𝑝), implying 𝑥 = 𝑘𝑝 − (𝑟 + 1)𝑛, 𝑘 ∈ ℤ . Now 

considering 𝑦 = 2𝑛 , the first case produces class solutions  

(i) (𝑥, 𝑦) = ([𝑘𝑝 + (𝑟 − 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ,  

and the second case produces class solutions  
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(ii) (𝑥, 𝑦) = ([𝑘𝑝 − (𝑟 + 1)𝑛] , [2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈ ℤ  . 

Now, if 𝑦 is odd, then 𝑝 − 𝑦 is even, and substituting this in (i) and (ii) above we get 

the rest of the class solutions as 

(iii) (𝑥, 𝑦) = ([𝑘𝑝 + (𝑟 − 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈

ℤ    

(iv) (𝑥, 𝑦) = ([𝑘𝑝 − (𝑟 + 1)𝑛] , [𝑝 − 2𝑛]), 𝑛 = 1, 2, …, 
𝑝−1

2
; 𝑘 ∈

ℤ  . 
And the proof of the Theorem is complete. 

Here are three examples, first one regarding part (a) and the last two for part (b). 

 

Example 1 For the congruency 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 11), since 𝑝 = 11 = 4 × 3 − 1, 

by part (a) of the Theorem 2 the only class solutions of the congruency are the trivial 

ones ([𝑢], [𝑢]), 𝑢 ∈ ℤ .  
 

Example 2 For the congruency 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 7), since 𝑝 = 2 × 3 + 1, by part 

(b) of the Theorem 2 apart from trivial class solutions ([𝑢], [𝑢]), 𝑢 ∈ ℤ, we also have 

2(𝑝 − 1) = 12 sequences of class solutions, each involving the quadratic root 𝑟 of the 

integer −3 (𝑚𝑜𝑑 7) which happens to be 𝑟 = 2, as 22 ≡  −3 (𝑚𝑜𝑑 7). By part (b) of 

the Theorem the remaining class solutions are as follows, 

(i) (𝑥, 𝑦) = ([7𝑘 + 𝑛] , [2𝑛]), 𝑛 = 1, 2, 3; 𝑘 ∈ ℤ,  

(ii) (𝑥, 𝑦) = ([7𝑘 − 3𝑛] , [2𝑛]), 𝑛 = 1, 2, 3 ; 𝑘 ∈ ℤ  . 
(iii) (𝑥, 𝑦) = ([7𝑘 + 𝑛] , [7 − 2𝑛]), 𝑛 = 1, 2,3 ; 𝑘 ∈ ℤ    
(iv)  (𝑥, 𝑦) = ([7𝑘 − 3𝑛] , [7 − 2𝑛]), 𝑛 = 1, 2, 3 ; 𝑘 ∈ ℤ  . 

 

Example 3 For the congruency 𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 13), since 𝑝 = 4 × 3 + 1, again 

by part (b) of the Theorem 2 apart from trivial class solutions ([𝑢], [𝑢]), 𝑢 ∈ ℤ, we 

also have 2(𝑝 − 1) = 24 sequences of class solutions, each involving the quadratic 

root 𝑟 of the integer −3 (𝑚𝑜𝑑 13) which happens to 𝑟 = 6, as 62 ≡  −3 (𝑚𝑜𝑑 13). 

Again, by part (b) of the Theorem the remaining class solutions are as follows, 

(i) (𝑥, 𝑦) = ([13𝑘 + 5𝑛] , [2𝑛]), 𝑛 = 1, 2, 3, 4, 5, 6; 𝑘 ∈ ℤ,  

(ii) (𝑥, 𝑦) = ([13𝑘 − 7𝑛] , [2𝑛]), 𝑛 = 1, 2, 3, 4, 5, 6 ; 𝑘 ∈ ℤ  . 
(iii) (𝑥, 𝑦) = ([13𝑘 + 5𝑛] , [13 − 2𝑛]), 𝑛 = 1, 2,3, 4, 5, 6 ; 𝑘 ∈ ℤ    
(iv) (𝑥, 𝑦) = ([13𝑘 − 7𝑛] , [13 − 2𝑛]), 𝑛 = 1, 2, 3, 4, 5, 6 ; 𝑘 ∈ ℤ  . 

 

The last theorem of the article describes class solutions for the last congruency  

𝑥6 − 𝑦6 ≡ 0 (𝑚𝑜𝑑 𝑝) in the title. 

Theorem 3 (Astaneh) Let 𝑝 bean odd prime number, and consider the congruency 

𝑥6 − 𝑦6 ≡ 0 (𝑚𝑜𝑑 𝑝), then; 

(a)  If 𝑝 = 3𝑘 − 1, 𝑘 = 1, 2, … ; then the only class solutions of the congruency are 

the trivial ones of the form ([𝑢], [𝑢]), 𝑢 ∈ ℤ  ([𝑢], [−𝑢]), 𝑢 ∈ ℤ . 
(b)  If 𝑝 = 3𝑘 + 1, 𝑘 = 1, 2, … , then apart from the trivial class solutions of the 

form ([𝑢], [𝑢]), 𝑢 ∈ ℤ  ([𝑢], [−𝑢]), 𝑢 ∈ ℤ , the remaining class solutions of the 

congruency are all class solutions listed as (i)-(iv) in part (b) of Theorem 1 plus 

all class solutions listed as (i)-(iv) in part (b) of Theorem 2. 

Proof: (a) Simply because the congruency 𝑥6 − 𝑦6 ≡ 0 (𝑚𝑜𝑑 𝑝) is equivalent to the 

system of congruences consisting of the two congruences 𝑥3 + 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝) and 

𝑥3 − 𝑦3 ≡ 0 (𝑚𝑜𝑑 𝑝). 

(b) Fe reason as in the proof of part (a) .            


