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The well over a century old unsettled “twin prime” conjecture claims that there are
infinitely many twin prime numbers of the form (p,p + 2). It is readily concluded at
secondary math level that any such twin pair of primes, except for the first two pairs
(2,3)and (3,5), should be of the form (6n — 1, 6n + 1) for some integer n. This
article presents necessary condition(s) on the integral parameter n if (bn — 1, 6n +
1) are to be a twin prime pair. For Example Proposition 2 of the article shows that
when the twin prime is of the particular form (12n — 1,2n + 1) and n is an odd,
then n is necessarily a quadratic residue both mod (6én — 1) and mod (6n + 1).
The article has been arranged to present a Lemma first followed by two
Propositions, and a final main Theorem. The idea behind this arrangement has been
the more straightforward proof of the Lemma would be an adequate warm up to
follow the proofs of the two propositions, which in turn make it easier to follow the
proof of the Theorem. And a Corollary to the main Theorem will extend the similar
assertion of Proposition 2 to all factors of both and the odd integral parameter n.
A few concrete numerical Examples are brought up after Propositions and the
Theorem to show how they are applied in practice.
Since all proofs for the Lemma, the two Propositions, and the main Theorem make
use of celebrated Gausse’s Lemma on quadratic residues for prime numbers, it
would be in order first to recall that, given a prime number p, an integer a is called a
quadratic residue mod (p) if there is an integer x such that x? = a mod (p). If such
integer x doesn’t exist a is called a non-quadratic residue mod (p). Also the

Legendre’s symbol (%) involved in Gausse’s Lemma for a prime number p and an
integer a is simply defined to be (%) = 1if a is a quadratic residue mod (p), (%) =0
if pla, and (%) = —1 if a a non-quadratic residue mod (p). | also recall Gausse’s

Lemma that asserts if U, = {1,2,3, ..., p—1}andifa € U, then (%) = (—1)#,
where . = |aP N N| is the number of members of the set aP N N with P being the
setP = {1, 2,3, .., pT_l}, N =—P,and aP = {a,Za, 3aq, ..., pT_la}. And

finally @, denotes the subgroup of U, consisting of quadratic residues mod (p).
Lemma : Let (6n — 1, 6n + 1) be any pair of twin primes. Then

(6n3—1) - (6n3+1) - (_1)71

Note, that the Lemma implies that when n is odd 3 is a non-quadratic residue both
mod(6n — 1) and mod(6n + 1), for example considering that n = 3 for the twine
primes (17,19), 3 € Q;7 and3 & Q4. But for the twine primes (71,73), since n =

12,3 € Q;; and 3 € Qy3, as 282 = 3mod(71) and 212 = 3mod(73).
Proof: (a) Let p = 6n + 1 first, then p7—1 = 6n+21_1 = 3n,sothatP =
{1,2,3,...,3n}and 3P ={3,6,9,,..., ,9n}.

We now arrange members of 3P to look like a 3 by n matrix as follows

3p={ 3, 6, 9, 3n—3,  3n,



3n+ 3, 3n+6, 3n+9, . 6n — 3, 6n

é6n + 3, én+6, 6n+09, . 9n — 3, 9n }
Next, we represent the set 3P in such a way that all members in the new
representation are congruent to above members of 3P mod (6n + 1) in exact
respective order. To this end, since members of the first row are already in the set P
we leave the first row as it is, however we replace all members u of the second and
third row by their congruent u — (6n + 1) = umod (6n + 1), and get

3P ={ 3, 6, 9, . 3n— 3, 3n,
—3n+2, —3n+6, —3n+9, . — 4, -1,
2, 5 8, . 3n—4, 3n—1 }

As it is observed, only the entire members of the second row in this representation

of 3P are in the set of N = —P. Therefore of u = | nP N N| = n, and by Gausse’s
3

Lemma, (—) = (—D".

6n+1
p—-1 __ 6n-1-1

(b) In this case —=——= 3n—1,sothatP ={1,2,3,...,3n —1},and 3P =
{3,6,9,, ..., ,9n — 3}. To prove this case, we again arrange the set 3P in three
different rows, but in contrast with the first case this time we would rather have the
first n — 1 members of 3P as the first row, and the next n members of 3P as the
second row and finally the the last n members of 3P as the third row, so that the
total number in the three rows willbe (n — 1) + n + n = 3n — 1, as expected,

3p={ 3, 6, 9, e 3n—3,
3n, 3n+ 3, 3n+ 6, . 6n — 6, 6n —3
6n, 6n+3, 6n+6, . 9n — 6, 9n — 3 }

Next, again we represent the set 3P in such a way that all members in the new
representation are congruent to the above members mod (6n — 1) in the same
respective order. To this end, again members of the first row are already in the set P
so we leave the first row unchanged, but we replace all members u of the second
and third row by their congruent u — (6n — 1) = umod (6n — 1), and get

3P ={ 3, 6, 9, v, 3n—3,
—-3n+1 —-3n+4 —3n+7, .. -5, -2
1, 4 7, e, 3n—5 3n—2, }

Again we observe, only the entire n members of the second row in this

representation of 3P are in the set N = —P. Therefore of u = | nP N N| = n, and by

3 — (_1\Nn
Gausses Lemma, (6n_1) = (—D".
Excercisel: Use the same method of proof of the Lemma, and show that, assuming

(bn —1, 6n + 1) are twins primes,
(a) If n is even th (%) =(-%) =17
a) If n is even then ) = \onrs =(—1)=.

) 5 3n-1 (3n+1) 5

(b)Ifnisodd then (=) = (-1) 2 =(-1) = =(-=)
(c) Use the above Lemma, parts (@) and (b) of the Exercise, and the formula (%b) =

b . 6 6 sn
(S) (;) and show that when n is even (m) = (6n+1) =(-1)z,

5n+1
but when n is odd then, (L) =(-1) =z .
6n+1

Proposition 1: Ifnis an odd number and (6n — 1, 6n + 1) are twin primes, then




(Gnn 1) - (6n+1) =(= 1)3(" § (1)
3(n— D
Proof: We will show that both ( — ) and ( p— ) are each equalto (—1) 2z ,in

two separate parts, and in that order.
3(n 1)

(A) To prove the part ( ) = (—1) 2z ,weconsiderp =6n+ 1.

p-1 % = 3n, both sets P = {1, 2,3, ..., 3n} and

nP = {n, 2n, 3n, ..., ,3n?%} have 3n members. Therefore display the set nP similar
to an n by 3 matrix where the first row has the first 3 members of In order to prove
(1) for this case, since P (and also nP) has 3n members of nP , the second row then
next three members of nP, ..., and the last row the last three members of nP as,

Since —

nP = { n, 2n, 3n
4n, 5n, 6n
n, 8n, 9n
10n, 11n, 12n
13n, 14n, 15n

(3n —5)n, Bn—4)n, ((Bn-3)n

(Bn—-2)n, @GBn-1n, 3n? |}
Next we are going to represent the set nP in such a way that in the new
representations all members are in the precise respective order congruent to the
above members mod (6n + 1). Since the fiirst three numbers on the first row above
are already members of P we leave the first row above unchanged. However, we
replace all members u of the second and third rows by u — (bn + 1) =
umod(6n + 1). Then we replace all members v of the fourth and fifth rows by v —
2(bn+ 1) = vmod (6n + 1), and like wise we replace all members w of the sixth
and seventh rows by w — 3(6n + 1) = wmod(6n + 1), and ....., we continue in
this way, until we finally replace the members z of the last two (n — 1)th and nth

rows by z — (112;1) (6n + 1) = zmod(6n + 1). Having completed this task we see
that the set nP will have the following form,

nP = { n, 2n, 3n,
-2n-1, -n-1, -1,

n-1, 2n -1, 3n-1,
2n-2, n-—2, -2,

n-2, 2n-2, 3n-2

-5n+1 -3n+1 -n+1

2 7 2 7 2 !

n+1 3n+1 5n+1

T2 2 2 }

Note that, since n is odd, the fractions on the last two rows above are all integers.
Next, as we observe from above congruent representation of nP that, starting from
the second row down to the last, the entire numbers in each row belong to N and P
alternatively, while the numbers in the last row entirely belonging to P. Since each
row contains three number, and except for first row the set nP has (n — 1) rows,
the number of members in the set nP which are at the same time members of N is



exactly 3 X (nT_l) = B(HT_U , as claimed. Therefore, by Gausse’s Lemma we have

n 3(n—-1) ]
(6n+1) = (—1) 2z ,and the proof of this part is complete.

(B) Now consider the case where the prime numberis p = 6n — 1. Since p7—1 =
6en—1-1

= 3n — 1, this time the set P has 3n — 1 members; that is

P ={1,2,3,..., 3n— 1}. However, to conclude (1) for this case we rather arrange
the set nP = {n, 2n, 3n, ..., (3n — 1)n} such that the first row has only the first two
original members n, 2n of nP (which already belong to P) but the remaining rows
having three consecutive members of the set nP, just as in the proof of part (A).
Note that with this arrangement, except for the first row, the set nP has 3(n — 1)
members from the second row down to the last, as seen bellow,

nP={n, 2n
3n, 4n, 5n,
én, 7n, 8n
9n, 10n, 11n,
12n, 13n, 14n

(3n-6)n, (3n-5)n, (3n-4)n

(3n-3)n, (3n-2)n, (3n-1)n }
From here, the rest of the proof would be goes exactly similar to the proof of the
previous part (A) [except for replacing (6n + 1) by (6n — 1) all along]; meaning that
starting from the second row we replace all members u of the second and third rows
by u — (6n — 1) = u mod(6n — 1), and replace all members v of the fourth and
fifth rows by v — 2(6n — 1) = v mod (6n — 1). Then likewise replace all members
w of the sixth and seventh rows by w — 3(6n — 1) = w mod(6n — 1), and, again
we continue in this way until we finally replace all members z of the last two

(n—1)thand nthrow by z — (112;1) (6n — 1) = vmod(6n — 1). Having completed

this task, after simplifications of all members of nP from second row down to the
last, we obtain a representation of the set nP as,

nP = { n, 2n
—3n+1, —-2n+1, —n+1
1,, n+1, 2n+1
-3n+ 2, —-2n+1, —n+1
2, n+2 2n+2
-5n—-1 -3n—-1 -n—1
2 ’ 2 ’ ’
n—-1 3n—-1 5n—-1
2’ 2 2 }

Note that, since n is odd, the fractions on last two rows are indeed all integers.
Again, as we observe from the above representation of the set nP, starting from the
second row we have 3n — 3 members in, each row having three numbers, which
means (except for the first row) we have n — 1, and again starting from the second
row (whose members belong to N = —P) members of each row entirely belong to
N and P alternatively, while the entire numbers in the last row belong to P. Again It



3(n—-1)

follows that there are exactly% (3n—3) = members in the set aP N N, and

therefore by Gausse’s Lemma
3(n-1)

(Z=)=u=laPnN| = (-1) = .
Corollary 1 If n is an odd number and (6n — 1, 6n + 1) are twin primes, then
(i) If n = 1 mod (4) then n is a quadratic residues both mod (6n — 1)

and mod(6n + 1).

(ii) If n = 3 mod (4) then n is a non-quadratic residue neither

mod ( 6n — 1) and nor mod(6n + 1).

proof: (i) If n = 1 mod (4), then n = 4k + 1, for some integer k, then

n — n — (_1\6k —
(Gn—l) - (6n+1) =D =1
(ii) If n = 3 mod (4),then n = 4k + 3, for some integer k, then

(enn—1) - (enn+1) - (_1)3(2k+1) =-1
Example 1:
(i) For twin primes (29, 31),n = 5 = 1 mod (4),
112 = 292 = 5mod (29), and 62 = 25% = 5 mod (31).

(i)  For twin primes (101,103),n = 17 = 1 mod (4),
44?2 = 572 = 17 mod (101), and 292 = 74? = 17 mod (103).
Also for twin primes (101,103), n = 77 = 1 mod (4),
1862 = 73 mod (437), and 1032 = 73 mod (439).
(ii) For twin primes (437,439), since n = 73 mod (4), the unit 3
is a non-quadratic residue neither mod (17) nor mod (19).
Also, for twin primes (41,43), sincen = 7 = 3 mod (4), the
unit 7 is a non-quadratic residue neither mod (41) nor mod (43).
In the following Exercise, parts (@) can be concluded as a direct application of
Legendre’s Criterion,

(3) = (a)pT_lmod(p) .

P
However part (b) can concluded by the method used in the proof of the above

Proposition.
Exercise 2: Show that, if (6n — 1, 6n + 1) are twin primes, then

(a) (61_:1) = (—1)3""1 =1, ( -1 ) = (—1)3".

6n+1
Therefore —1 € Qgp—1, but —1 isn’t a member of Qg 41-

M( on ) = (—1)3", but( on ) = 1, which means 6n € Qg,_;.

6n—1 6n—1
Remark 1: Since quadratic residues are also defined for composite numbers in
textbooks, just in case a reader wonders whether the converse of part (i) of the
above Corollary; which means whether conditions n € Qg,_1 and n € Q¢;,, 41 imply
(bn — 1, 6n + 1) are twin primes, here are two an examples to the contrary:

(i) 73 € Qu3,a5103% = 73 mod(437) and 73 € Q39 as 1862 =
73 mod(439), but 437 isn’t a prime number.

(ii) 9 €05 as32=9mod(53), and 9 € Q55 as 82 = 9 mod(55), , but 55
isn’t a prime number.




Proposition 2: Ifnis an odd number and (12n — 1, 12n + 1) are twin primes,

thenn € Q5,1 and n € @y, 4. Thatis (12:_1) = (12:“) =1 (2)

Proof: The proof is very similar to that of Proposition 1, so | will be briefer about it.
Again we use Gausse’s Lemma to prove (2). As in proof of Proposition 1 we first

showthat( - )= 1.
12n+1
12n+1-1

(A) Consider p = 12n + 1 first, then since p7—1 =—F = 6n we have

P={1,2,3,..,6n}and nP = {n,2n, 3n,.., ,6n%}.Inorderto prove (2) for this
case, since P (and also nP) has 6n members we first arrange members of nP inn
rows, each having 6 members as follows,

nP = {n, 2n, 3n, 4n, 5n, 6n,
n, 8n, 9n, 10n, 11n, 12n,
13n, 14n, 15n, 16n, 17n, 18n
19n, 20n, 21n, 22n, 23n, 24n

(én -11)n, (6n-10)n, (6n-9)n, (6n-8)n, (6n-7)n, (6N-6)n

(én-5)n, (6n-4)n, (6n-3)n, (6N-2)n, (6n-1)n,( 6N)N }
The six numbers on the first row of the above set already belong to P, so it is enough
to show that from the second row down to the last one there are 3(n — 1) members
belonging to N = —P, because, 3(n — 1) being an even number, by Gausse’s

12n+1) = (—1)3("=D = 1 To this end, just as in the proof of

Propositionl, starting from the second row we replace all members u of the second
and third rows by u — (12n + 1) = u mod(12n + 1), then we replace all members
v of the fourth and fifth rows by v — 2(12n + 1) = v mod (12n + 1), and likewise
all members w of the sixth and seventh rows by w — 3(12n + 1) = w mod(12n +
1), and ....., we continue in this way, until we finally replace the members z of the
last two (n — 1)th and nth rows by

z— (112;1) (12n+ 1) = v mod(12n + 1). Having completed this task we see that the
set nP above, after simplifications of its members, starting from second row down to
the last, we will get the following set, as a representation of nP, having the same

class of numbers mod(12n + 1) expressed in the same order of its members,
nP

Lemma we will have (

={ n, 2n, 3n, 4n, 5n, 6n
5n-1, -4n-1 ,- 3n-1,- 2n-1, -n-1, -1,
n-1, 2n-1, 3n-1, 4n-1, 5n-1, 6n-1,
-5n-2, -4n-2,- -3n-2, -2n-2, -n-2, -2
n-2, 2n-2, 3n-2, 4n-2, 5n-2, 6n-2
-11n+1 -9In+1 -7n+1 —-5n+1 -3n+1 -n+1
2 7 2 7 2 ’ 2 ’ 2 7 2
n_+1' 3n+1 ) 5n+1 ) n+1 ) In+1 ) 11n+1 }
2

2 2 2 2 2
Note that since n is odd, the fractions in the last two rows are indeed integers. Now

as we observe from above arrangement, starting from the second row down to the
last, the entire numbers in each row alternatively belong to N and P respectively,
while the numbers in the last row entirely belonging to P. Since each row contains
six numbers and except for first row the set nP has (n — 1) other rows, the number

6



of members in the set nP that are at the same time members of N is exactly 3(n —
1), as claimed. So the proof of this part is complete.

(B) Now consider the case where the prime numberis p = 12n — 1. Since p7—1 =

12n;1_1 = 6n — 1, this time the set P has 6n — 1 members; thatis P = {1,2,3, ...,

6m — 1}. To conclude (2) for this case we rather arrange the set nP =

{n,2n,3n, ..., (6n — 1)n} such that the first row has only the first five original
members n, 2n, 3n,4n, 5n of nP (which happen to belong to P) but the

remaining n — 1 rows, each having the next six consecutive members of nP, as in
the proof of the first part (A). Note that with this arrangement, except for the first
row, the set nP has 6n —1 — 5 = 6(n — 1) members from the second row down to
the last, as seen bellow,

nP = { n, 2n, 3n, an, 5n,
én, 7n, 8n, 9n, 10n, 11n,
12n, 13n, 14n, 15n, 16n, 17n,
18 n, 19n, 20n, 21n, 22n, 23n

(bn-12) n, (6n-11)n, (6n-10)n, (6n-9)n, (6n-8)n, (6n-7)n
(én-6) n, (6n-5)n, (6én-4)n, (6Nn-3)n, (6n-2)n,(6Nn-1)n }
From here, the rest of the proof would be goes exactly similar to the proof of the
first case (A) except for replacing (12n + 1) by (12n — 1) all along.
It will then follow that the set nP has the following representation whose respective
members will eventually simplify as nP =
{ n, 2n, 3n, 4n, 5n,
-6n+l, -5n+1, -4n+l1, -3n+l, -2n+l, -n+1l,
1, n+1, 2n+l, 3n+1, 4n+1, 5n +1,
-bn+2, -5n+2, -4n+2, -3n+2, -2n+2 ,-n+2
2, n+2, 2n+2, 3n+2 ,4n+2, 5n+2

-11n-1 -9n-1 -7n—-1 -5n-1 -3n-1 -n-1

2 7 2 7 2’ 2 7 2 7 2
n-1 3n—-1 5n-1 n—1 In-1 11n-1 }
2’ 2’ 2’ 2’ 2’ 2

Note that, since n is odd, the fractions above are indeed all integers.

Again, as observe from the above representation of the set nP, starting from the
second row we have 6n—1 — 5 = 6(n — 1) members in the set, each row having
six numbers, each row alternatively belong to N and P, while numbers in the last
row belong to P. It follows that there are exactly% X 6(n—1) = 3(n— 1) members
in the set aP N N, and therefore by Gausse’s Lemma

(52=)=u=laPnN| = (-1)*"D =1,

12n-1
as 3(n — 1) is an even number. This completes the proof of the Proposition 2.

Example 2:
For twin primes (59,61) = (12x5—1,12x 5+ 1), wheren = 5, we have
82 =512 = 5mod (59), and 262 = 352 = 5 mod (61).
5 5
so.(35) = () =1

And now | bring the main Theorem of the article,



Theorem (Astaneh): Letk = 1,2,3, ..., and (6kn — 1, 6kn + 1) a twin prime .
(1) 1f n a odd, then

n n 3k(n-1)
(6kn—1) - (6kn+1) =D 2. (3)
(1) 1f nis an even number of the form n = 2! n’, where n' is odd, then
n _ 2 I
(6kn—1) = G (4)
n _ 2 I
(6kn+1) - (6kn+1) (5)

Proof: In the light of the proofs delivered for Propositions 1&2, the plan of the proof
should be pretty clear, so her we go,

(I)  Letn be odd. We will prove (3), by showing (

n 3k(n-1)
6kn+1) - (_1) : and

n 3k(n—-1)
(6kn_1) = (=1)" z , separately and in that order.

(A)Consider the prime number p = 6kn + 1 first. Since

p-l_ Gk‘n;l_l =3knwehave P ={1,2,3,...,3kn}and nP = {n,2n,

2
3n, ..., ,3kn?}.Inorder to prove (3) for this case, since P (and thus nP) has 3kn
members we first arrange members of nP in n rows, each row having 3k members
as,

nP = { n, 2n, - (3k —

n, 3kn,
(3k + 1)n, (3k + 2)n, (6k — 1)n, 6kn,
(6k + 1)n, (6k + 2)n, 9k — 1)n, 9kn,
9k + 1)n, 9k + 2)n, (12k — 1)n, 12kn,
(12k + 1)n, (12k + 2)n, ) (12k — 1)n, 15kn,

.y

[3(n—2)k+1]n, [3(n—2)k + 2]n,..., 3kn?—3kn—n, 3kn? — 3kn

[3(n—Dk+1]n, [3(n— 1Dk + 2]n, ..., 3kn? —n, 3kn? }
The 3k numbers on the first row of the above set already belong to P, so it is enough
3k(n—-1)

to show that starting from the second row down to the last there are

members belonging to N = —P .To this end, just as in the proof of Proposition1&2,
starting from the second row we replace all members u of the second and third rows
by u — (6kn + 1) = umod(6kn + 1), then we replace all members v of the fourth
and fifth rows by v — 2(6kn + 1) = v mod (6kn + 1), and likewise all members w
of the sixth and seventh rows by w — 3(6kn + 1) = w mod(6kn + 1), and ....., we
continue in this way, until we finally replace the members z of the last two (n —

1)th and nth rows by z — (112;1) (6kn + 1) = zmod(6kn + 1). Having completed
this task we see that the set nP above, after simplifications of its members, starting
from second row down to the last, will have the following representation of nP,

having the same class of numbers mod(6kn + 1) expressed in the same order of its
members,

nP = { n, 2n, e (3k — D)n, 3kn,

—-3kn+n-1, -3kn+2n-1, .. -n—1, -1,
n—1, 2n—1, 3kn—n+1, 3kn-—1,

—3kn+n—-2, -3kn+2n-2, .., —-n—2, -2,

8



n—2, 2n— 2, 3kn—n— 2, 3kn — 2,

Y]

1-(6k+1)n 1-(6k—1)n -3n+1 -n+1
! 2 ! 2 o 2 ! 2
n+1 3n+1 (6k—1)n-1 (6k+1)n-1
2 ’ 2 ’ A 2 7’ 2 }

Note that, since n is odd, the fractions above are indeed all integers.

Also, as we observe from above arrangement, starting from the second row down to
the last, the entire numbers in each row alternatively belong to N and P
respectively, while the numbers in the last row entirely belonging to P. Since each
row contains 3k numbers and except for first row the set nP has (n — 1) other rows,
the number of members in the set nP which are at the same time members of N is

_ 3k(n-1)
3(n-1) —2_)=(-1)" : ,andthe

exactly , as claimed. So by Gausse’s Lemma (

proof of this part is complete.

(B) Now consider the case where the prime numberis p = 6kn — 1. Since p7—1 =

6"”;1_1 = 3kn — 1, this time the set P has 3kn — 1 members; thatis P =

{1,2,3,...,3kn — 1}, and therefore so has nP = {n,2n,3n, ..., 3kn — 1)n}.To
conclude (3) for this case we rather arrange the set nPsuch that the first row has
only the first (3k — 1) members of nP, and the remaining (n — 1) rows have 3k
respective members of nP as follows

nP ={ n, 2n, . (3k — n,
3kn, (3k + n, (6k — 2)n, (6k — 1)n,
6kn, (6k + 1)n, 9k — 2)n, (9k — 1)n,
9kn, 9k + Dn, .., (12k — 2)n, (12k — Dn,
12kn, (12k+ 1n, .., (15k — 2)n, (15k — 1)n,
3k(n —2)n, [3(n—2)k + 1]n, ..., [3k(n—1) —2]n, [Bk(n—1) —1]n
3k(n— Dn, [3k(n—1) +1]n, .., [3kn — 1]n, 3kn? }

Again, the first (3k — 1) numbers in the first row of the above set already belong to

P, so it is enough to show that starting from the second row down to the last there

are %_1) members belonging to N = —P .To this end, just as in the case (A),

starting from the second row we replace all members u of the second and third rows
by u — (6kn — 1) = umod(6kn — 1), then we replace all members v of the fourth
and fifth rows by v — 2(6kn — 1) = v mod (6kn — 1), and likewise all members w
of the sixth and seventh rows by w — 3(6kn — 1) = w mod(6kn — 1), and ....., we
continue in this way, until we finally replace the members z of the last two

(n— 1)th and nth rows by z — (n;) (6kn — 1) = v mod(6kn — 1). Having

completed this task the set nP above, after simplifications of its members, starting
from second row down to the last, will have the following representation, having
the same class of numbers mod(6kn — 1) ,expressed in the same order of its
members,

nP ={ n, 2n, . (3k — n,
—6kn+1, —6kn+n+1,.., —2n+1, —-n+1,
1, n+1, we, 3kn—-2n+1, 3kn—n+1,
—-3kn+2, —-3kn+n+2,.., —2n+ 2, —n+2,



2, n+ 2 v, 3kn—-2n+1, 3kn—-n+2,
(—=6k+1)n—1 (—6k+3)n—-1 (=3n—-1) (—n—1)
2 ’ 2 S 2 ’ 2 ’
n—1 3n—1 6k—1)n—-1 (B6k+1)n—-1
2 2 o 2 ’ 2 }
Again note that, since n is odd, the fractions above are indeed all integers. Also, as
we observe from above arrangement, starting from the second row down to the last,
the entire numbers in each row alternatively belong to N and P respectively, while
the numbers in the last row entirely belonging to P. Since each row contains 3k

numbers and except for first row the set nP has (n — 1) rows, the number of
3k(n—-1)
2 7’

members in the set nP which are at the same time members of N is exactly

3k(n—1)
6k:+1) = (—1) 2z .Hence proof of partm is

as claimed. So by Gausse’s Lemma (
complete.

(1) sincen = 20/, for some I = 1,2, 3, ... and some odd integer
n’, we can look at the original twin prime as (6Kn' — 1, 6Kn’ + 1), with K = 2!k.
Now, since n' is odd, we can apply (3) to the pair (6Kn' — 1, 6Kn’ + 1) and get

( L ) = ( L ) = @1)@ = (—1)% = 1. Therefore,

6Kn/—1 6Kn/+1

(61;’—1) - (ekz;1) =1, and,

() - (625) - (2) () - () - G
6kn—1 6kn—1 6kn—1 6kn—1 6kn—1 6kn—1

which means equality (4) holds. Similarly

(gos) = (o) = () () = (o) = G
6kn+1) ~ \6kn+1) ~ \ekn+1/ \6kn+1/) ~ \ekn+1) ~ ‘6kn+1’ ’

and equality (5) also holds as well. Hence the proof the Theorem is complete.

Example 3: (I) For twin primes (347,349) = (6 x2x29—-1,6 X 2X 29 + 1),
where k = 2 and n = 29, since n is odd equality (3) in part (I) of Theorem implies

29 29 3k(n—1) 3x2(29-1)
<6><2><29—1>_<6><2><29+1>_(_1) 2 =D 2 =L

S0 29 € Q347 and 29 € Q349. Indeed 422 = 29 mod (347) and 992 =

29 mod (349).

(1) Consider the twin prime (239,241) = (6 X2 x 20 —1,6 X 2 X 20 + 1). Then
k =2andn = 20 = 22 x 5, whichmeans [ = 1, n’ = 5. Then equality (4) in the

20 2 \2
Theorem implies (E) = (E) . Now since 992 = 2 mod (239), it follows that
20

(E) = 1 which means 20 € Q,34. Also the equality (5) in the Theorem implies

20\ _ [ 2)? . 2 — .
(E) = (241) , and since 23% = 2 mod (241), it also follows that 20 € Q4.

Corollary 2: Letn be an odd number and let (6kn — 1, 6kn + 1) be twin primes.
If k is even and/or if n = 1 mod (4), then n is a quadratic residue both

mod(6kn — 1) and mod(6kn + 1).

Proof: Is left to the reader to conclude from the Theorem
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Remark 2: When dealing with twin prime numbers, it would be relevant to
mention as we consider positive integers along the number line, we may encounter
very large but finite intervals consisting of consecutive composite integers. Indeed, if
k is as large as you like, the set of k consecutive numbers,

Co={ (k+D)'+2,k+1D!+3, (k+D'+4,...,(k+ D!+ (k+1) },

consists of composite number only, as the first integer in Cy, is divisible by 2,the
second by 3, the third by 4, ..., and the last one by (k + 1) .However, in spite of this
(and as to support the twin prime conjecture), if you subtract the last number in Cj
from the first number in Cy, 4, you get
k+2)+2-[tk+1)+k+D]=Ck+1D)xk+1D)'+1-k,

and it shows a much larger interval between C;, and Cj,4 in which prime numbers (
and so also perhaps twin primes) might show up.

On the other note, if {p,,} represents the sequence of all prime number, it is known
the series .1° pi diverges. In spite of this fact, in 1919 Viggo Brunt proved if the

conjecture of the existence of infinite primes twins is a fact, then the series }.1° qi,
n
where {q,, } represents all members of twin prime, converges to what is known as
Brunt’s constant.
It may be relevant also to mention that the divergent series ).3° pi of prime
n

reciprocals (like any other divergent series }.7° a,for which lim a,, = 0) has
n—-x
infinitely many infinite subseries that converge. Indeed, given any small number € >
0 one can find a subseries of }.7° pi that converges to a number lass than e > 0. To
n

observe this, let € > 0 be arbitrary, and choose a number to satisfy N > i + 1. Then

for each positive integer k = 1,2,3, ... find a prime number p, with Nk < Pk, then
1
1 1 1 1 N 1
—+—+—+ <Y 5=Tr=—<e
b1 b2 b3 Zl Nk 1—% N-1
I Close the article by a Remark unrelated to quadratic residues, but about inverses
modulus consecutive odd numbers, including twin primes. (6n — 1, 6n + 1).

Remark 3: Let 6n — 1, 6n + 1 be any two consecutive odd numbers, then 37 is
the inverse of (6n — 1) mod (6n + 1) and, at the same time, 3n is the inverse of
(6n + 1) mod (6n — 1).

Note that, since (6n + 1) = 2 mod (6n — 1) it also follows that 3n is also the
inverse of 2 mod (6n — 1), and likewise (6n — 1) = —2 mod (6n + 1)

—2mod (6n + 1) implies 3nis also the inverse of —2 mod (6n + 1).

Proofs: Simply follows from the two respective identities,

3n(bn—1)=18n*-3n=18n*-3n—-1+1=
(n+1)(3n—1)+1 = 1mod(6n+1)
and
3n(bn+1)=18n*+3n=18n*+3n—-1+1=
(n—1)Bn+1)+1.
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