
1 
 

 
 

Certain Quadratic Residues for Twin Primes 
Ali Astaneh Ph.D.(Lon), Vancouver BC, Canada 

The well over a century old unsettled “twin prime” conjecture claims that there are 
infinitely many twin prime numbers of the form (𝑝, 𝑝 + 2). It is readily concluded at 
secondary math level that any such twin pair of primes, except for the first two pairs   
(2,3) and  (3,5), should be of the form (6𝑛 − 1, 6𝑛 + 1) for some integer 𝑛. This 
article presents necessary condition(s) on the integral parameter	𝑛 if (6𝑛 − 1, 6𝑛 +
1) are to be a twin prime pair. For Example Proposition 2 of the article shows that 
when the twin prime is of the particular form (12𝑛 − 1, 2𝑛 + 1) and 𝑛 is an odd, 
then 𝑛 is necessarily a quadratic residue both 𝑚𝑜𝑑	(6𝑛 − 1) and 𝑚𝑜𝑑	(6𝑛 + 1).   
The article has been arranged to present a Lemma first followed by two 
Propositions, and a final main Theorem. The idea behind this arrangement has been 
the more straightforward proof of the Lemma would be an adequate warm up to 
follow the proofs of the two propositions, which in turn make it easier to follow the 
proof of the Theorem. And a Corollary to the main Theorem will extend the similar 
assertion of Proposition 2 to all factors of both and the odd integral parameter	𝑛. 
A few concrete numerical Examples are brought up after Propositions and the 
Theorem to show how they are applied in practice.  
Since all proofs for the Lemma, the two Propositions, and the main Theorem make 
use of celebrated Gausse’s Lemma on quadratic residues for prime numbers, it 
would be in order first to recall that, given a prime number	𝑝, an integer 𝑎 is called a 
quadratic residue 𝑚𝑜𝑑	(𝑝) if there is an integer 𝑥 such that 𝑥2 ≡ 𝑎	𝑚𝑜𝑑	(𝑝). If such 
integer 𝑥	doesn’t exist a is called a non-quadratic residue 𝑚𝑜𝑑	(𝑝). Also the 
Legendre’s symbol 45

6
7 involved in Gausse’s Lemma for a prime number 𝑝 and an 

integer 𝑎 is simply defined to be 45
6
7 = 1 if 𝑎 is a quadratic residue mod (𝑝), 45

6
7 = 0 

if 𝑝|𝑎, and 45
6
7 = −1 if 𝑎 a non-quadratic residue mod (𝑝). I also recall Gausse’s 

Lemma that asserts if 𝑈6 = {1, 2, 3, … , 𝑝 − 1} and if 𝑎 ∈ 𝑈6 then 45
6
7 = (−1)A, 

where 𝜇 = |𝑎𝑃 ∩ 𝑁| is the number of members of the set 𝑎𝑃 ∩ 𝑁 with 𝑃 being the 
set 𝑃 = F1, 2, 3, … , 6GH

2
I,  𝑁 = −𝑃, and 𝑎𝑃 = F𝑎, 2𝑎, 3𝑎, … , 6GH

2
𝑎I.  And 

finally	𝑄6 denotes the subgroup of 𝑈6 consisting of quadratic residues 𝑚𝑜𝑑	(𝑝). 
Lemma :  Let (6𝑛 − 1,	6𝑛 + 1) be any pair of twin primes. Then  

 4 K
LMGH

7 = 4 K
LMNH

7 = (−1)M         
Note, that the Lemma implies that when 𝑛 is odd 3 is a non-quadratic residue both 
𝑚𝑜𝑑(6𝑛 − 1) and 𝑚𝑜𝑑(6𝑛 + 1), for example considering that 𝑛 = 3 for the twine 
primes (17,19),  3 ∉ 𝑄HR and3 ∉ 𝑄HS. But for the twine primes (71,73), since  𝑛 =
12 , 3 ∈ 𝑄RH and	3 ∈ 𝑄RK, as 282 ≡ 3𝑚𝑜𝑑(71) and 212 ≡ 3𝑚𝑜𝑑(73). 
Proof:  (a) Let 𝑝 = 6𝑛 + 1 first, then 6GH

2
= 	 LMNHGH

2
= 3𝑛, so that 𝑃 =

{1, 2, 3,… , 3𝑛} and  3𝑃 = {3, 6, 9, , …,			 , 9𝑛}. 
We now arrange members of 3𝑃 to look like a 3 by 𝑛 matrix as follows                            
                                                                                                                                                          
3𝑃 = {								3,																			6,															9,													 … ,												3𝑛 − 3,											3𝑛,       
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 													3𝑛 + 3,									3𝑛 + 6,					3𝑛 + 9,								 … ,												6𝑛 − 3,												6𝑛			 
														6𝑛 + 3,									6𝑛 + 6,					6𝑛 + 9,									 … ,											9𝑛 − 3,												9𝑛		        }      
Next, we represent the set 3𝑃 in such a way that all members in the new 
representation are congruent to above members of 3𝑃 𝑚𝑜𝑑	(6𝑛 + 1) in exact 
respective order. To this end, since members of the first row are already in the set 𝑃 
we leave the first row as it is, however we replace all members 𝑢 of the second and 
third row by their congruent 𝑢 − (6𝑛 + 1) ≡ 𝑢	𝑚𝑜𝑑	(6𝑛 + 1), and get 
 
3𝑃 = {								3,																				6,																9,																 … ,															3𝑛 − 3,															3𝑛,       
 											−3𝑛 + 2,			 − 3𝑛 + 6,			 − 	3𝑛 + 9,								 …,																	− 4,																	 − 1,		 
																					2,																				5																	8,																	 … ,															3𝑛 − 4,											3𝑛 − 1		        }      
As it is observed, only the entire members of the second row in this representation 
of 3𝑃 are in the set of 𝑁 = −𝑃. Therefore of 𝜇 = |	𝑛𝑃 ∩ 𝑁| = 𝑛, and by Gausse’s 
Lemma, 4 K

LMNH
7 = (−1)M. 

(b) In this case 	6GH
2
= 	 LMGHGH

2
= 3𝑛 − 1, so that	𝑃 = {1, 2, 3,… , 3𝑛 − 1}, and 3𝑃 =

{3, 6, 9, , …,			 , 9𝑛 − 3}. To prove this case, we again arrange the set 3𝑃 in three 
different rows, but in contrast with the first case this time we would rather have the 
first 𝑛 − 1 members of 3𝑃 as the first row, and the next 𝑛 members of 3𝑃 as the 
second row and finally the the last 𝑛 members of 3𝑃 as the third row, so that the 
total number in the three rows will be (𝑛 − 1) + 𝑛 + 𝑛 = 3𝑛 − 1, as expected,  
3𝑃 = {					3,																	6,																9,													 … ,										3𝑛 − 3,											       
 															3𝑛,								3𝑛 + 3,							3𝑛 + 6,							 … ,												6𝑛 − 6,													6𝑛 − 3 
																6𝑛,								6𝑛 + 3,							6𝑛 + 6,								 … ,											9𝑛 − 6,														9𝑛 − 3								    }   
Next, again we represent the set 3𝑃 in such a way that all members in the new 
representation are congruent to the above members 𝑚𝑜𝑑	(6𝑛 − 1) in the same 
respective order. To this end, again members of the first row are already in the set 𝑃 
so we leave the first row unchanged, but we replace all members 𝑢 of the second 
and third row by their congruent 𝑢 − (6𝑛 − 1) ≡ 𝑢	𝑚𝑜𝑑	(6𝑛 − 1), and get 
3𝑃 = {								3,																				6,																9,												 … ,				3𝑛 − 3,												       
 											−3𝑛 + 1,			 − 3𝑛 + 4,			 − 	3𝑛 + 7,				 …,							− 5,												 − 2 
																					1,																				4																	7,													 … ,				3𝑛 − 5									3𝑛 − 2,											  }      
Again we observe, only the entire 𝑛 members of the second row in this 
representation of 3𝑃 are in the set 𝑁 = −𝑃. Therefore of 𝜇 = |	𝑛𝑃 ∩ 𝑁| = 𝑛, and by 
Gausses Lemma, 4 K

LMGH
7 = (−1)M. 

Excercise1: Use the same method of proof of the Lemma, and show that, assuming  
(6𝑛 − 1,	6𝑛 + 1) are twins primes,   
(a) If 𝑛 is even then       	4 2

LMGH
7 = 4 2

LMNH
7 = (−1)

XY
Z .                   

(b) If 𝑛 is odd then 4 2
LMGH

7 = (−1)
XY[\
Z = (−1)

(XY]\)
Z = 4 2

LMNH
7.                   

(c) Use the above Lemma, parts (a) and (b) of the Exercise, and the formula 45^
6
7 =

45
6
7 4^

6
7 and show that when n is even 4 L

LMGH
7 = 4 L

LMNH
7 = (−1)

_Y
Z , 

but when n is odd then, 4 L
LMNH

7 = (−1)
_Y]\
Z .  

Proposition 1:  If 𝑛 is an odd number and (6𝑛 − 1,	6𝑛 + 1) are twin primes, then  
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                                       4 M
LMGH

7 = 4 M
LMNH

7 = (−1)
X(Y[\)

Z .                (1) 

Proof: We will show that both 4 M
LMNH

7 and 4 M
LMGH

7 are each equal to (−1)
X(Y[\)

Z , in 
two separate parts, and in that order. 

(A) To prove the part 4 M
LMNH

7 = (−1)
X(Y[\)

Z , we consider 𝑝 = 6𝑛 + 1.  

Since	6GH
2
= 	 LMNHGH

2
= 3𝑛, both sets 𝑃 = {1, 2, 3,… , 3𝑛} and  

𝑛𝑃 = {𝑛, 2𝑛, 3𝑛, …,			 , 3𝑛2}  have 3𝑛 members. Therefore display the set 𝑛𝑃 similar 
to an 𝑛 by 3 matrix where the first row has the first 3 members of  In order to prove 
(1) for this case, since 𝑃 (and also 𝑛𝑃) has 3𝑛 members of 𝑛𝑃 , the second row then 
next three members of 𝑛𝑃, ..., and the last row the last three members of 𝑛𝑃  as ,                                                                                                                                
𝑛𝑃 = {										𝑛,																							2𝑛,																				3𝑛	 
    																	4𝑛,																						5𝑛,																				6𝑛	 

              7𝑛,																						8𝑛,																					9𝑛	 
              10𝑛,																		11𝑛,																		12𝑛		 
              13𝑛,																		14𝑛,																		15𝑛 

                                               … 
               (3𝑛 − 5)𝑛,								(3𝑛 − 4)𝑛,							(3𝑛 − 3)𝑛 

         (3𝑛 − 2)𝑛,							(3𝑛 − 1)𝑛,														3𝑛2      } 
Next we are going to represent the set 𝑛𝑃 in such a way that in the new 
representations all members are in the precise respective order congruent to the 
above members 𝑚𝑜𝑑	(6𝑛 + 1). Since the fiirst three numbers on the first row above 
are already members of  𝑃 we leave the first row above unchanged. However, we 
replace all members 𝑢 of the second and third rows by 𝑢 − (6𝑛 + 1) ≡ 
𝑢	𝑚𝑜𝑑(6𝑛 + 1). Then we replace all members 𝑣 of the fourth and fifth rows by 𝑣 −
2(6𝑛 + 1) ≡ 𝑣	𝑚𝑜𝑑	(6𝑛 + 1), and like wise we replace all members 𝑤 of the sixth 
and seventh rows by 𝑤 − 3(6𝑛 + 1) ≡ 𝑤	𝑚𝑜𝑑(6𝑛 + 1), and  ….., we continue in 
this way, until we finally replace the members 𝑧 of the last two (𝑛 − 1)𝑡ℎ and 𝑛𝑡ℎ 
rows by 𝑧 − (MGH)

2
(6𝑛 + 1) ≡ 𝑧	𝑚𝑜𝑑(6𝑛 + 1). Having completed this task we see 

that the set 𝑛𝑃 will have the following form,  
𝑛𝑃 = {											𝑛,																2𝑛,																	3𝑛,																																																																							 

                         - 2n-1,          - n-1 ,             - 1, 
                            n-1,             2n -1,           3n -1, 
                           2n -2,          n – 2,              - 2, 
                            n - 2,           2n -2 ,          3n -2 
                                                … 
                           GeMNH

2
 ,       	GKMNH

2
 ,          GMNH

2
 , 

                             MNH
2

 , 											KMNH
2

 ,           eMNH
2

               } 
Note that, since 𝑛 is odd, the fractions on the last two rows above are all integers. 
Next, as we observe from above congruent representation of 𝑛𝑃 that, starting from 
the second row down to the last, the entire numbers in each row belong to 𝑁 and 𝑃 
alternatively, while the numbers in the last row entirely belonging to 𝑃. Since each 
row contains three number, and except for first row the set 𝑛𝑃 has (𝑛 − 1) rows, 
the number of members in the set 𝑛𝑃 which are at the same time members of 𝑁	is 
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exactly 3 × (MGH)
2

= K(MGH)
2

 , as claimed. Therefore, by Gausse’s Lemma we have 

4 M
LMNH

7 = (−1)
X(Y[\)

Z , and the proof of this part is complete. 
 
(B) Now consider the case where the prime number is 𝑝 = 6𝑛 − 1. Since  6GH

2
=

LMGHGH
2

= 3𝑛 − 1, this time the set 𝑃 has 3𝑛 − 1 members; that is  
𝑃 = {1, 2, 3, … , 3𝑛 − 1}. However, to conclude (1) for this case we rather arrange 
the set 𝑛𝑃 = {𝑛, 2𝑛, 3𝑛, … , (3𝑛 − 1)𝑛} such that the first row has only the first two 
original members  𝑛, 2𝑛	of 𝑛𝑃 (which already belong to 𝑃) but the remaining rows 
having three consecutive members of the set 𝑛𝑃, just as in the proof of part (A). 
Note that with this arrangement, except for the first row, the set 𝑛𝑃 has 3(𝑛 − 1) 
members from the second row down to the last, as seen bellow, 
                      𝑛𝑃 =   {		𝑛,																2𝑛	 
                                    3n,               4n,            5n, 
                                    6n,               7n,            8n 
                                    9n,             10n,          11n, 
                                  12n,             13n,          14n 
                                                      … 
                              (3n -6) n,      (3n-5) n,      ( 3n-4) n 
                              (3n -3) n,      (3n-2) n,       (3n-1) n    } 
From here, the rest of the proof would be goes exactly similar to the proof of the 
previous part (A) [except for replacing (6𝑛 + 1)	by (6𝑛 − 1) all along]; meaning that 
starting from the second row we replace all members 𝑢 of the second and third rows 
by 𝑢 − (6𝑛 − 1) ≡ 𝑢	𝑚𝑜𝑑(6𝑛 − 1), and replace all members 𝑣 of the fourth and 
fifth rows by 𝑣 − 2(6𝑛 − 1) ≡ 𝑣	𝑚𝑜𝑑	(6𝑛 − 1). Then likewise replace all members 
𝑤 of the sixth and seventh rows by 𝑤 − 3(6𝑛 − 1) ≡ 𝑤	𝑚𝑜𝑑(6𝑛 − 1), and, again 
we continue in this way until we finally replace all members 𝑧 of the last two 
(𝑛 − 1)𝑡ℎ and 𝑛𝑡ℎ row by  𝑧 − (MGH)

2
(6𝑛 − 1) ≡ 𝑣	𝑚𝑜𝑑(6𝑛 − 1). Having completed 

this task, after simplifications of all members of 𝑛𝑃 from second row down to the 
last, we obtain a representation of the set  	𝑛𝑃 as, 
𝑛𝑃 =              {									𝑛,																	2𝑛 
                        	−3𝑛 + 1,				 − 2𝑛 + 1,					 − 𝑛 + 1 
                                  	1, ,														𝑛 + 1,								2𝑛 + 1 
                    −3𝑛 + 2,											 − 2𝑛 + 1,			 − 𝑛 + 1 
                                 	2,																		𝑛 + 2,							2𝑛 + 2 
                                                        … 

                     GeMGH
2

 , 														GKMGH
2

 , 							GMGH
2

 , 

                     MGH
2

 ,                  KMGH
2

 , 								eMGH
2

  } 
Note that, since 𝑛 is odd, the fractions on last two rows are indeed all integers. 
Again, as we observe from the above representation of the set 𝑛𝑃, starting from the 
second row we have 3𝑛 − 3 members in, each row having three numbers, which 
means (except for the first row) we have 𝑛 − 1, and again starting from the second 
row (whose members belong to 𝑁 = −𝑃) members of each row entirely belong to 
𝑁	and 𝑃 alternatively, while the entire numbers in the last row belong to 𝑃. Again It 
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follows that there are exactly H
2
(3𝑛 − 3) = K(MGH)

2
 members in the set 𝑎𝑃 ∩ 𝑁, and 

therefore by Gausse’s Lemma  

                                          4 M
LMGH

7 = 𝜇 = |𝑎𝑃 ∩ 𝑁| 		= 	 (−1)
X(Y[\)

Z . 

Corollary 1 If 𝑛 is an odd number and (6𝑛 − 1,	6𝑛 + 1) are twin primes, then 
(i) If 𝑛 ≡ 1	𝑚𝑜𝑑	(4) then 𝑛 is a quadratic residues both mod (6𝑛 − 1) 
and	𝑚𝑜𝑑(6𝑛 + 1). 
(ii) If 𝑛 ≡ 3	𝑚𝑜𝑑	(4) then 𝑛 is a non-quadratic residue neither 
 mod ( 6𝑛 − 1) and nor 𝑚𝑜𝑑(6𝑛 + 1). 
proof: (i) If 𝑛 ≡ 1	𝑚𝑜𝑑	(4),	then  𝑛 = 4𝑘 + 1, for some integer k, then   
                                      4 M

LMGH
7 = 4 M

LMNH
7 = (−1)Lh = 1.  

(ii) If 𝑛 ≡ 3	𝑚𝑜𝑑	(4),	then 𝑛 = 4𝑘 + 3, for some integer k, then     
                                     4 M

LMGH
7 = 4 M

LMNH
7 = (−1)K(2hNH) = −1. 

Example 1:   
(i) For twin primes (29,	31), 𝑛 = 5 ≡ 1	𝑚𝑜𝑑	(4),   
          112 ≡ 292 ≡ 5	𝑚𝑜𝑑	(29), and  62 ≡ 252 ≡ 5	𝑚𝑜𝑑	(31). 

 
     (ii)      For twin primes (101,103), 𝑛 = 17 ≡ 1	𝑚𝑜𝑑	(4),   

        	442 ≡ 572 ≡ 17	𝑚𝑜𝑑	(101), and  292 ≡ 742 ≡ 17	𝑚𝑜𝑑	(103). 
               Also for twin primes (101,103), 𝑛 = 77 ≡ 1	𝑚𝑜𝑑	(4),   

        	1862 ≡ 73	𝑚𝑜𝑑	(437), and 1032 ≡ 73	𝑚𝑜𝑑	(439). 
(ii) For twin primes (437,439), since 𝑛 = 73	𝑚𝑜𝑑	(4), the unit 3   
            is a non-quadratic residue neither	𝑚𝑜𝑑	(17) nor	𝑚𝑜𝑑	(19).  

              Also, for twin primes (41,43), since 𝑛 = 7 ≡ 3	𝑚𝑜𝑑	(4), the  
              unit 7 is a non-quadratic residue neither	𝑚𝑜𝑑	(41) nor	𝑚𝑜𝑑	(43).  
In the following Exercise, parts (a) can be concluded as a direct application of 
Legendre’s Criterion,  

                                                  45
6
7 ≡ (𝑎)

i[\
Z 𝑚𝑜𝑑(𝑝) . 

However part (b) can concluded by the method used in the proof of the above 
Proposition. 
Exercise 2:  Show that, if (6𝑛 − 1,	6𝑛 + 1) are twin primes, then 
 
 (a) 4 GH

LMGH
7 = (−1)KMGH = 1,    4 GH

LMNH
7 = (−1)KM. 

Therefore −1 ∈ 𝑄LMGH, but −1 isn’t a member of 𝑄LMNH. 
(b) 4 LM

LMGH
7 = (−1)KM, but 4 LM

LMGH
7 = 1, which means 6𝑛 ∈ 𝑄LMGH.  

Remark 1:  Since quadratic residues are also defined for composite numbers in 
textbooks, just in case a reader wonders whether the converse of part (i) of the 
above Corollary; which means whether conditions 𝑛 ∈ 𝑄LMGH and 𝑛 ∈ 𝑄LMNH imply 
(6𝑛 − 1,	6𝑛 + 1) are twin primes, here are two an examples to the contrary:  

(i) 73 ∈ 𝑄jKR as 1032 ≡ 73	𝑚𝑜𝑑(437) and 73 ∈ 𝑄jKS  as 1862 ≡
73	𝑚𝑜𝑑(439), but 437 isn’t a prime number. 

(ii) 9 ∈ 𝑄eK as 32 ≡ 9	𝑚𝑜𝑑(53),  and 9 ∈ 𝑄ee as 82 ≡ 9	𝑚𝑜𝑑(55), , but 55 
isn’t a prime number. 
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Proposition 2:  If 𝑛 is an odd number and (12𝑛 − 1,	12𝑛 + 1) are twin primes, 
then 𝑛 ∈ 𝑄2MGH and 𝑛 ∈ 𝑄2MNH. That is      4 M

H2MGH
7 = 4 M

H2MNH
7 = 1                   (2) 

 Proof: The proof is very similar to that of Proposition 1, so I will be briefer about it. 
Again we use Gausse’s Lemma to prove (2). As in proof of Proposition 1 we first 
show that4 M

H2MNH
7 = 1.  

(A)  Consider 𝑝 = 12𝑛 + 1 first, then since	6GH
2
= 	 H2MNHGH

2
= 6𝑛 we have 

𝑃 = {1, 2, 3, … , 6𝑛} and  𝑛𝑃 = {𝑛, 2𝑛, 3𝑛, …,			 , 6𝑛2} . In order to prove (2) for this 
case, since 𝑃 (and also 𝑛𝑃) has 6𝑛 members we first arrange members of 𝑛𝑃 in 𝑛 
rows, each having  6 members as follows ,                                                                                                                  
𝑛𝑃 = {	𝑛,																	2𝑛,																		3𝑛,																4n,                5n,             6n, 
                           7n,                8n,                 9n,               10n,             11n,           12n, 
                           13n,             14n,               15n,              16n,             17n,          18n 
                           19n,             20n,               21n,              22n,             23n,          24n 
                                                                          …  
                         (6n -11) n,   (6n-10) n,     (6n-9) n,     (6n -8) n,       (6n-7) n,    (6n-6) n 
                         (6n -5) n,      (6n-4) n,       (6n-3) n,     (6n -2) n,       (6n-1) n, (  6n) n       } 
The six numbers on the first row of the above set already belong to 𝑃, so it is enough 
to show that from the second row down to the last one there are 3(𝑛 − 1) members 
belonging to 𝑁 = −𝑃, because, 3(𝑛 − 1) being an even number, by Gausse’s 
Lemma we will have 4 M

H2MNH
7 = (−1)K(MGH) = 1 .To this end, just as in the proof of 

Proposition1, starting from the second row we replace all members 𝑢 of the second 
and third rows by 𝑢 − (12𝑛 + 1) ≡ 𝑢	𝑚𝑜𝑑(12𝑛 + 1),  then we replace all members 
𝑣 of the fourth and fifth rows by 𝑣 − 2(12𝑛 + 1) ≡ 𝑣	𝑚𝑜𝑑	(12𝑛 + 1), and likewise 
all members 𝑤 of the sixth and seventh rows by 𝑤 − 3(12𝑛 + 1) ≡ 𝑤	𝑚𝑜𝑑(12𝑛 +
1), and  ….., we continue in this way, until we finally replace the members 𝑧 of the 
last two (𝑛 − 1)𝑡ℎ and 𝑛𝑡ℎ rows by  
𝑧 − (MGH)

2
(12𝑛 + 1) ≡ 𝑣	𝑚𝑜𝑑(12𝑛 + 1). Having completed this task we see that the 

set 𝑛𝑃 above, after simplifications of its members, starting from second row down to 
the last, we will get the following set, as a representation of 𝑛𝑃, having the same 
class of numbers 𝑚𝑜𝑑(12𝑛 + 1) expressed in the same order of its members, 
	𝑛𝑃
= {											𝑛,																	2𝑛,															3𝑛,														4𝑛,													5𝑛,															6𝑛																																																																							 
                5n-1,         - 4n-1 ,-        3n - 1,-         2n-1,         -n-1,              -1, 
                n-1,              2n-1,           3n-1,            4n-1,         5n-1,           6n -1,  
              -5n-2,           -4n -2, -      - 3n-2,          -2n-2,         -n-2,              -2 
                 n-2,             2n-2,           3n-2,            4n-2,          5n-2,          6n-2 
                                                                         … 
               GHHMNH

2
,         GSMNH

2
 , 				GRMNH

2
   , 									GeMNH

2
 ,    			GKMNH

2
 , 									GMNH

2
      

               MNH
2

, 												KMNH
2

 , 								eMNH
2

   , 								RMNH
2

 , 									SMNH
2

 , 											HHMNH
2

         } 
Note that since 𝑛 is odd, the fractions in the last two rows are indeed integers. Now 
as we observe from above arrangement, starting from the second row down to the 
last, the entire numbers in each row alternatively belong to 𝑁 and 𝑃 respectively, 
while the numbers in the last row entirely belonging to 𝑃. Since each row contains 
six numbers and except for first row the set 𝑛𝑃 has (𝑛 − 1) other rows, the number 
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of members in the set 𝑛𝑃 that are at the same time members of 𝑁	is exactly 3(𝑛 −
1), as claimed. So the proof of this part is complete. 
 (B) Now consider the case where the prime number is 𝑝 = 12𝑛 − 1. Since  6GH

2
=

H2MGHGH
2

= 6𝑛 − 1, this time the set 𝑃 has 6𝑛 − 1 members; that is 𝑃 = {1, 2, 3, … ,
6𝑛 − 1}. To conclude (2) for this case we rather arrange the set 𝑛𝑃 =
{𝑛, 2𝑛, 3𝑛,… , (6𝑛 − 1)𝑛} such that the first row has only the first five original 
members  𝑛, 2𝑛, 3𝑛, 4𝑛, 5𝑛	of 𝑛𝑃 (which happen to belong to 𝑃) but the 
remaining	𝑛 − 1 rows, each  having the next six consecutive members of 𝑛𝑃, as in 
the proof of the first part (A). Note that with this arrangement, except for the first 
row, the set 𝑛𝑃 has 6𝑛 − 1 − 5 = 6(𝑛 − 1) members from the second row down to 
the last, as seen bellow, 
             𝑛𝑃 = {				𝑛,																		2𝑛,																	3n,                4n,                 5n, 
                           6n,                 7n,                8n,                 9n,                10n,        11n, 
                          12n,              13n,              14n,               15n,              16n,        17n, 
                          18 n,             19n,               20n,               21n,              22n,        23n       
                                                                       …, 
                         (6n -12) n,   (6n-11) n,     (6n-10) n,     (6n -9) n,     (6n-8) n,   (6n-7) n 
                         (6n -6) n,     (6n-5) n,        (6n-4) n,       (6n -3) n,      (6n-2) n, (6n-1) n } 
From here, the rest of the proof would be goes exactly similar to the proof of the 
first case (A) except for replacing (12𝑛 + 1)	by (12𝑛 − 1) all along. 
It will then follow that the set 𝑛𝑃 has the following representation whose respective 
members will eventually simplify as 𝑛𝑃 =
{																				𝑛,												2𝑛,												3𝑛,										4𝑛,								5𝑛,																																																																							 
                - 6n+1,    - 5n+1,      - 4n+1,    - 3n+1,   -2n+1,      -n+1, 
                      1,          n+1,          2n+1,      3n+1,     4n+1,       5n +1,  
                  -6n+2,    -5n +2,       -4n+2,    -3n+2,   - 2n+2      ,-n+2 
                      2,          n+2,          2n+2,      3n+2    , 4n+2,       5n+2 
                                                                   … 

               GHHMGH
2

,   GSMGH
2

 ,   GRMGH
2

,     GeMGH
2

 ,  GKMGH
2

 , 	GMGH
2

      

                 MGH
2

, 						KMGH
2

 ,     eMGH
2
,      RMGH

2
 ,     SMGH

2
 ,    HHMGH

2
               } 

Note that, since 𝑛 is odd, the fractions above are indeed all integers. 
Again, as observe from the above representation of the set 𝑛𝑃, starting from the 
second row we have 6𝑛—1 − 5 = 6(𝑛 − 1) members in the set, each row having 
six numbers, each row alternatively belong to 𝑁	and 𝑃, while numbers in the last 
row belong to 𝑃. It follows that there are exactly H

2
× 6(𝑛 − 1) = 3(𝑛 − 1) members 

in the set 𝑎𝑃 ∩ 𝑁, and therefore by Gausse’s Lemma  
                                  4 M

H2MGH
7 = 𝜇 = |𝑎𝑃 ∩ 𝑁| 	= 	 (−1)K(MGH) = 1, 

as 3(𝑛 − 1) is an even number. This completes the proof of the Proposition 2. 
Example 2:   
For twin primes (	59,61) = (	12 × 5 − 1, 12 × 5 + 1), where 𝑛 = 5, we have 

          82 ≡ 512 ≡ 5	𝑚𝑜𝑑	(59),  and  262 ≡ 352 ≡ 5	𝑚𝑜𝑑	(61). 
So, 4 e

eS
7 = 4 e

LH
7 = 1. 

And now I bring the main Theorem of the article, 
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Theorem (Astaneh): Let 𝑘 = 1, 2, 3, … , and (6𝑘𝑛 − 1,	6𝑘𝑛 + 1) a twin prime . 
(I) If 𝑛 a odd, then  

                                            4 M
LhMGH

7 = 4 M
LhMNH

7 = (−1)
Xl(Y[\)

Z .               (3) 

(II) If 𝑛 is an even number of the form 𝑛 = 2m n’, where 𝑛n is odd, then  

                                            4 M
LhMGH

7 = ( 2
LhMGH

)m.                                  (4) 

                                   4 M
LhMNH

7 = ( 2
LhMNH

)m	                                 (5)     
Proof: In the light of the proofs delivered for Propositions 1&2, the plan of the proof 
should be pretty clear, so her we go,  

(I) Let 𝑛 be odd. We will prove (3), by showing 4 M
LhMNH

7 = (−1)
Xl(Y[\)

Z  and 

4 M
LhMGH

7 = (−1)
Xl(Y[\)

Z ,  separately and in that order. 
(A)Consider the prime number 𝑝 = 6𝑘𝑛 + 1 first. Since  
	6GH
2
= 	 LhMNHGH

2
= 3𝑘𝑛 we have 𝑃 = {1, 2, 3,… , 3𝑘𝑛} and  𝑛𝑃 = {𝑛, 2𝑛,

3𝑛, …,			 , 3𝑘𝑛2} . In order to prove (3) for this case, since 𝑃 (and thus 𝑛𝑃) has 3𝑘𝑛 
members we first arrange members of 𝑛𝑃 in 𝑛 rows, each row having 3𝑘 members 
as ,                                                                                                                          
𝑛𝑃 = {																								𝑛,																										2𝑛,																 …,												(3𝑘 −
1)𝑛,																											3𝑘𝑛,  
         (3𝑘 + 1)𝑛,                   (3𝑘 + 2)𝑛,        …,             (6𝑘 − 1)𝑛,		                        6𝑘𝑛,	  
         (6𝑘 + 1)𝑛,                  (6𝑘 + 2)𝑛,         …,             (9𝑘 − 1)𝑛,		                        9𝑘𝑛,	  
         (9𝑘 + 1)𝑛,                  (9𝑘 + 2)𝑛,         …,             (12𝑘 − 1)𝑛,		                   	12𝑘𝑛,	  
         (12𝑘 + 1)𝑛,               (12𝑘 + 2)𝑛,       …,             (12𝑘 − 1)𝑛,		                    15𝑘𝑛,	  
                                                                            …,   
     [3(𝑛 − 2)𝑘 + 1]𝑛,			[3(𝑛 − 2)𝑘 + 2]𝑛,… ,					3𝑘𝑛2 − 3𝑘𝑛 − 𝑛,										3𝑘𝑛2 − 3𝑘𝑛 
					[3(𝑛 − 1)𝑘 + 1]𝑛,			[3(𝑛 − 1)𝑘 + 2]𝑛, … ,															3𝑘𝑛2 − 𝑛,																					3𝑘𝑛2      }    
The 3𝑘 numbers on the first row of the above set already belong to 𝑃, so it is enough 
to show that starting from the second row down to the last there are Kh(MGH)

2
 

members belonging to 𝑁 = −𝑃 .To this end, just as in the proof of Proposition1&2, 
starting from the second row we replace all members 𝑢 of the second and third rows 
by 𝑢 − (6𝑘𝑛 + 1) ≡ 𝑢	𝑚𝑜𝑑(6𝑘𝑛 + 1),  then we replace all members 𝑣 of the fourth 
and fifth rows by 𝑣 − 2(6𝑘𝑛 + 1) ≡ 𝑣	𝑚𝑜𝑑	(6𝑘𝑛 + 1), and likewise all members 𝑤 
of the sixth and seventh rows by 𝑤 − 3(6𝑘𝑛 + 1) ≡ 𝑤	𝑚𝑜𝑑(6𝑘𝑛 + 1), and  ….., we 
continue in this way, until we finally replace the members 𝑧 of the last two (𝑛 −
1)𝑡ℎ and 𝑛𝑡ℎ rows by 𝑧 − (MGH)

2
(6𝑘𝑛 + 1) ≡ 𝑧	𝑚𝑜𝑑(6𝑘𝑛 + 1). Having completed 

this task we see that the set 𝑛𝑃 above, after simplifications of its members, starting 
from second row down to the last, will have the following representation of 𝑛𝑃, 
having the same class of numbers 𝑚𝑜𝑑(6𝑘𝑛 + 1) expressed in the same order of its 
members, 

𝑛𝑃 = {									𝑛,																							2𝑛,																			 …,										(3𝑘 − 1)𝑛,           3𝑘𝑛,  
                      −3𝑘𝑛 + 𝑛 − 1,  −3𝑘𝑛 + 2𝑛 − 1,      …,            −𝑛 − 1,                −1,  
                               𝑛 − 1,                2𝑛 − 1,               …,         3𝑘𝑛 − 𝑛 + 1,						3𝑘𝑛 − 1, 
                     −3𝑘𝑛 + 𝑛 − 2,   −3𝑘𝑛 + 2𝑛 − 2,      … ,            −𝑛 − 2,                −2,    
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                               𝑛 − 2,                2𝑛 − 2,               …,       		3𝑘𝑛 − 𝑛 − 2,     		3𝑘𝑛 − 2,  
                                                                                       …, 

,         HG
(LhNH)M
2

 ,	HG(LhGH)M
2

         …,              GKMNH
2

  ,       GMNH
2

   

            MNH
2

,             KMNH
2

,                   …,         
(LhGH)MGH

2
 ,   

(LhNH)MGH
2

     } 
Note that, since 𝑛 is odd, the fractions above are indeed all integers. 
Also, as we observe from above arrangement, starting from the second row down to 
the last, the entire numbers in each row alternatively belong to 𝑁 and 𝑃 
respectively, while the numbers in the last row entirely belonging to 𝑃. Since each 
row contains 3k numbers and except for first row the set 𝑛𝑃 has (𝑛 − 1) other rows, 
the number of members in the set 𝑛𝑃 which are at the same time members of 𝑁	is 

exactly Kh(MGH)
2

, as claimed. So by Gausse’s Lemma 4 M
LhMNH

7 = (−1)
Xl(Y[\)

Z , and the 
proof of this part is complete. 
(B) Now consider the case where the prime number is 𝑝 = 6𝑘𝑛 − 1. Since  6GH

2
=

LhMGHGH
2

= 3𝑘𝑛 − 1, this time the set 𝑃 has 3𝑘𝑛 − 1 members; that is 𝑃 =
{1, 2, 3,… , 3𝑘𝑛 − 1}, and therefore so has  𝑛𝑃 = {𝑛, 2𝑛, 3𝑛, … , (3𝑘𝑛 − 1)𝑛} . To 
conclude (3) for this case we rather arrange the set 𝑛𝑃such that the first row has 
only the first  (3𝑘 − 1)		members of	𝑛𝑃, and the remaining (𝑛 − 1) rows have 	3𝑘 
respective members of 𝑛𝑃 as follows 
𝑛𝑃 = {					𝑛,																								2𝑛,																 …,																					(3𝑘 − 1)𝑛,  
               3𝑘𝑛,                (3𝑘 + 1)𝑛,        …,                   (6𝑘 − 2)𝑛,		              (6𝑘 − 1)𝑛,	 
               6𝑘𝑛,             		(6𝑘 + 1)𝑛,		       …,                    (9𝑘 − 2)𝑛,                (9𝑘 − 1)𝑛,	  
               9𝑘𝑛,               (9𝑘 + 1)𝑛,		       …,                    (12𝑘 − 2)𝑛,            	(12𝑘 − 1)𝑛,	  
               12𝑘𝑛, 												(12𝑘 + 1)𝑛,		     …,                  (15𝑘 − 2)𝑛,              (15𝑘 − 1)𝑛,	  
                                                                    …,   
         3𝑘(𝑛 − 2)𝑛, [3(𝑛 − 2)𝑘 + 1]𝑛,…,								[3𝑘(𝑛 − 1) − 2]𝑛, [3𝑘(𝑛 − 1) − 1]𝑛				 
									3𝑘(𝑛 − 1)𝑛,			[3𝑘(𝑛 − 1) + 1]𝑛,…,															[3𝑘𝑛 − 1]𝑛,																					3𝑘𝑛2      }    
Again, the first (3𝑘 − 1) numbers in the first row of the above set already belong to 
𝑃, so it is enough to show that starting from the second row down to the last there 
are Kh(MGH)

2
 members belonging to 𝑁 = −𝑃 .To this end, just as in the case (A) , 

starting from the second row we replace all members 𝑢 of the second and third rows 
by 𝑢 − (6𝑘𝑛 − 1) ≡ 𝑢	𝑚𝑜𝑑(6𝑘𝑛 − 1),  then we replace all members 𝑣 of the fourth 
and fifth rows by 𝑣 − 2(6𝑘𝑛 − 1) ≡ 𝑣	𝑚𝑜𝑑	(6𝑘𝑛 − 1), and likewise all members 𝑤 
of the sixth and seventh rows by 𝑤 − 3(6𝑘𝑛 − 1) ≡ 𝑤	𝑚𝑜𝑑(6𝑘𝑛 − 1), and  ….., we 
continue in this way, until we finally replace the members 𝑧 of the last two  
(𝑛 − 1)𝑡ℎ and 𝑛𝑡ℎ rows by 𝑧 − (MGH)

2
(6𝑘𝑛 − 1) ≡ 𝑣	𝑚𝑜𝑑(6𝑘𝑛 − 1). Having 

completed this task the set 𝑛𝑃 above, after simplifications of its members, starting 
from second row down to the last, will have the following  representation , having 
the same class of numbers 𝑚𝑜𝑑(6𝑘𝑛 − 1) ,expressed in the same order of its 
members, 
  𝑛𝑃 = {			𝑛,																								2𝑛,												 …,													(3𝑘 − 1)𝑛,  
       		−6𝑘𝑛 + 1,					 − 6𝑘𝑛 + 𝑛 + 1,…,								− 2𝑛 + 1,										 − 𝑛 + 1, 
                 	1,																				𝑛 + 1,										 … ,							3𝑘𝑛 − 2𝑛 + 1,						3𝑘𝑛 − 𝑛 + 1, 
								−3𝑘𝑛 + 2,						 − 3𝑘𝑛 + 𝑛 + 2,…,									− 2𝑛 + 2,										 − 𝑛 + 2, 
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 																	2,																					𝑛 + 2											 … ,							3𝑘𝑛 − 2𝑛 + 1,						3𝑘𝑛 − 𝑛 + 2, 
                                                                       … ,  

	
(−6𝑘 + 1)𝑛 − 1

2 	,
(−6𝑘 + 3)𝑛 − 1

2 	,			… ,
(−3𝑛 − 1)

2 ,								
(−𝑛 − 1)

2 ,																						 

											
𝑛 − 1
2 	,																

3𝑛 − 1
2 ,														…,				

(6𝑘 − 1)𝑛 − 1
2 	,			

(6𝑘 + 1)𝑛 − 1
2 																	}			 

Again note that, since 𝑛 is odd, the fractions above are indeed all integers. Also, as 
we observe from above arrangement, starting from the second row down to the last, 
the entire numbers in each row alternatively belong to 𝑁 and 𝑃 respectively, while 
the numbers in the last row entirely belonging to 𝑃. Since each row contains 3k 
numbers and except for first row the set 𝑛𝑃 has (𝑛 − 1) rows, the number of 
members in the set 𝑛𝑃 which are at the same time members of 𝑁	is exactly Kh(MGH)

2
, 

as claimed. So by Gausse’s Lemma 4 M
LhMNH

7 = (−1)
Xl(Y[\)

Z . Hence proof of part (I)  is 
complete. 

(II) Since	𝑛 = 2m𝑛′, for some 𝑙 = 1, 2, 3,… and some odd integer 
 𝑛n, we can look at the original twin prime as (6𝐾𝑛′ − 1,	6𝐾𝑛n + 1), with 𝐾 = 2m𝑘. 
Now, since 𝑛′ is odd, we can apply (3) to the pair (6𝐾𝑛′ − 1,	6𝐾𝑛n + 1) and get 

4 Mn
LtMnGH

7 = 4 Mn
LtMnNH

7 = (−1)
Xl(Yu[\)

Z = (−1)
X×Zvl(Yu[\)

Z = 1. Therefore, 

 4 Mn
LhMGH

7 = 4 Mn
LhMNH

7 = 1, and,   

4 M
LhMGH

7 = 4 2vMn
LhMGH

7 = 4 Mn
LhMGH

7 4 2v

LhMGH
7 = 4 2v

LhMGH
7 = ( 2

LhMGH
)m	  

which means equality (4) holds. Similarly 

 4 M
LhMNH

7 = 4 2vMn
LhMNH

7 = 4 Mn
LhMNH

7 4 2v

LhMNH
7 = 4 2v

LhMNH
7 = ( 2

LhMNH
)m	,   

and equality (5) also holds as well. Hence the proof the Theorem is complete. 
 
Example 3: (I) For twin primes (	347,349) = (	6 × 2 × 29 − 1, 6 × 2 × 29 + 1), 
where 𝑘 = 2 and 𝑛 = 29, since 𝑛 is odd equality (3) in part (I) of Theorem implies  

w
29

6 × 2 × 29 − 1x = w
29

6 × 2 × 29 + 1x = (−1)
Kh(MGH)

2 = (−1)
K×2(2SGH)

2 = 1. 
So 29 ∈ 𝑄KjR  and 29 ∈ 𝑄KjS. Indeed  422 ≡ 29	𝑚𝑜𝑑	(347) and 992 ≡
29	𝑚𝑜𝑑	(349). 
(II) Consider the twin prime (	239,241) = (	6 × 2 × 20 − 1, 6 × 2 × 20 + 1). Then 
𝑘 = 2 and 𝑛 = 20 = 22 × 5, which means 𝑙 = 1, 𝑛′ = 5. Then equality (4) in the 

Theorem implies 4 2y
2KS
7 = 4 2

2KS
7
2
. Now since 992 ≡ 2	𝑚𝑜𝑑	(239), it follows that  

4 2y
KjR
7 = 1 which means 20 ∈ 𝑄2KS.	  Also the equality (5) in the Theorem implies   

4 2y
2jH
7 = 4 2

2jH
7
2
, and since  232 ≡ 2	𝑚𝑜𝑑	(241), it also follows that 20 ∈ 𝑄2jH.  

 
Corollary 2:  Let 𝑛 be an odd number and let (6𝑘𝑛 − 1,	6𝑘𝑛 + 1) be twin primes. 
If 𝑘 is even and/or if 𝑛 ≡ 1	𝑚𝑜𝑑	(4), then 𝑛 is a quadratic residue both  
𝑚𝑜𝑑(6𝑘𝑛 − 1)	and 𝑚𝑜𝑑(6𝑘𝑛 + 1).  
Proof: Is left to the reader to conclude from the Theorem 
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Remark 2: When dealing with twin prime numbers, it would be relevant to 
mention as we consider positive integers along the number line, we may encounter 
very large but finite intervals consisting of consecutive composite integers. Indeed, if 
𝑘 is as large as you like, the set of 𝑘 consecutive numbers,   
𝐶h = {			(𝑘 + 1)! + 2, (𝑘 + 1)! + 3,	 (𝑘 + 1)! + 4,… , (𝑘 + 1)! + (𝑘 + 1)     }, 
 
consists of composite number only, as the first integer in 𝐶h is divisible by 2,the 
second by 3, the third by 4, … , and the last one by	(𝑘 + 1) .However, in spite of this 
( and as to support the twin prime conjecture), if you subtract the last number in 𝐶h 
from the first number in 𝐶hNH, you get  
(𝑘 + 2)! + 2	– [(𝑘 + 1)! + (𝑘 + 1)] = (𝑘 + 1) × (𝑘 + 1)! + 1 − 𝑘,  
and it shows a much larger interval between 𝐶h and 𝐶hNH in which prime numbers ( 
and so also perhaps twin primes) might show up.  
 
On the other note, if {𝑝M} represents the sequence of all prime number, it is known 
the series ∑ H

6Y	
~
H  diverges. In spite of this fact, in 1919 Viggo Brunt proved if the 

conjecture of the existence of infinite primes twins is a fact, then the series ∑ H
�Y	

~
H , 

where {𝑞M } represents all members of twin prime, converges to what is known as 
Brunt’s constant. 
It may be relevant also to mention that the divergent series ∑ H

6Y	
~
H  of prime 

reciprocals (like any other divergent series ∑ 𝑎M~
H for which lim

M→⋈
𝑎M = 0)	has 

infinitely many infinite subseries that converge. Indeed, given any small number 𝜖 >
0 one can find a subseries of ∑ H

6Y	
~
H  that converges to a number lass than 𝜖 > 0. To 

observe this, let 𝜖 > 0 be arbitrary, and choose a number to satisfy 𝑁 > H
�
+ 1. Then 

for each positive integer 𝑘 = 1,2,3,… find a prime number 𝑝h	with 𝑁h < 𝑝h , then 
H
6\	
+ H

6Z	
+ H

6X	
+ ⋯ < ∑ H

�l
~
H = 	

\
�
HG\

�
= H

�GH
< 𝜖. 

 
I Close the article by a Remark unrelated to quadratic residues, but about inverses 
modulus consecutive odd numbers, including twin primes.	(6𝑛 − 1,	6𝑛 + 1).  
 
Remark 3: Let 6𝑛 − 1,	6𝑛 + 	1 be any two consecutive odd numbers, then 3𝑛 is 
the inverse of (6𝑛 − 1)	𝑚𝑜𝑑	(6𝑛 + 1) and, at the same time, 3𝑛 is the inverse of 
(6𝑛 + 1)	𝑚𝑜𝑑	(6𝑛 − 1). 
Note that, since (6𝑛 + 1) ≡ 2	mod	(6𝑛 − 1) it also follows that 3𝑛 is also the 
inverse of 2 mod	(6𝑛 − 1), and likewise (6𝑛 − 1) ≡ −2	mod	(6𝑛 + 1) 
−2	mod	(6𝑛 + 1)  implies  3𝑛 is also the inverse of  −2 mod	(6𝑛 + 1). 
Proofs:  Simply follows from the two respective identities, 
 

3𝑛(6𝑛 − 1) = 18𝑛2 − 3𝑛 = 18𝑛2 − 3𝑛 − 1 + 1 = 
																																															(6𝑛 + 1)(3𝑛 − 1) + 1 ≡ 1𝑚𝑜𝑑(6𝑛 + 1)	  
and 

3𝑛(6𝑛 + 1) = 18𝑛2 + 3𝑛 = 18𝑛2 + 3𝑛 − 1 + 1 = 
																																															(6𝑛 − 1)(3𝑛 + 1) + 1	. 


