

The Proof Behind Kaprekar's "Game of 6174"

Ali Astaneh Ph.D. (Lon), Vancouver School Board, Vancouver, BC

In this article I will present my *algebraic* proof as for the whys and hows for the “mystery” behind Kaperkar’s “Game of 6174”.

First, as a short history about the number **6174**, mostly known as Kaperkar’s *constant* in math literature, I should mention that the Indian (recreational) mathematician D.R. Karperkar was the first to have discovered the magical properties of the number **6174**, and introduced it at a local conference in Madras, in 1949.

Peculiar as it may sound, the main reason I decided to pursue this subject further, as far as I did, was my personal affiliation with the year 1949!

I might also point out the reason I have preferred to use the term “Game of **6174**”, rather than referring to **6174** as Kaperkar’s *constant* is because I believe the whole process of starting with a random four-digit number and performing a certain *operation* on it (and also to subsequent numbers obtained) repeatedly and eventually hit Kaperkar’s *constant* **6174** after no more than seven attempts of the *operations* provides an amusing and mind simulating math game or activity at as early level as of late elementary/early secondary. That is, I think it provides an excellent practice for a deeper study of the roles digits play in a four –digit number, in most commonly used base 10. Indeed, the *algebraic* proof seen below may shed some lights on the roles of those digits, for secondary teachers as well!

Let it also be known that a proof by using computer programming, and examining all allowable 9990 four-digit selections in the game and eventually hitting **6174** (at most after seven *operations*) has already been established before, but I don’t believe an *algebraic* proofs exists.

I would like to dedicate this proof to my son Sammie, as incidentally I concluded the main part of the proof on the evening of his birthday on June 14th 2020.

Having said all that; let’s bring the rules and the promise of the game, first.

“Kapermark’s Game of 6174”

Step 1: Choose any four-digit number $N = \underline{a} \underline{b} \underline{c} \underline{d}$ you wish, with at least one digit different from the others, but allow leading zero four-digit numbers such as $N = \underline{0} \underline{b} \underline{c} \underline{d}$ in your selection.

Step 2: Arrange your selected four-digit number in ascending order first and then in descending order to obtain (most likely) two other four-digit numbers.

Step 3: Subtract the smaller of the four-digit numbers obtained in the Step 2 from the greater one obtain a new four-digit number, and call it N_1 .

Step 4: Repeat the combined *operations* of Steps 2 and 3 on the four-digit number N_1 to obtain a next new number N_2 , and then N_3, \dots .

The promise of the game is that performing the *operation* consisting of Steps 2 and 3 no more than 7 times you eventually hit the magic number **6174**. That is, one of the four-digit numbers N_1, N_2, \dots, N_7 will eventually be equal to **6174**.

Interestingly, if your original selected number happens to be **6174** itself, the very first *operation* will produce the four-digit number **6174** itself, that is $N_1 = N$. Or, mathematically speaking **6174** is the unique fixed number (point) of the *operation* in this game; and that is what makes Kaperkatr's "constant" so special.

Note that, according to what we do in Step 2 of the game, if two four-digit numbers happen to have the same digits, but in different order, then performing the *operation* on either of the two four-digit numbers will produce the same new four-digit number. I have used this fact quite a few number of times in the following proof. I should also point out that for the specific four-digit number $N = 8532$ (or any other $4!$ four-digit number which has the same digits) we have $N_1 = 6174$, that is only a single *operation* is needed to get to **6174**. I will use this fact in the following proof quite a few times as well. On the other extreme, there are also at least 48 four-digit numbers with, $N_7 = 6174$; think of $4! = 24$ of them being the four-digit numbers obtained by permuting the digits of the number $N = 5213$ in the following Example, plus another $4! = 24$ for the four-digit numbers by permutations the digits of the number 5200, that the reader can verify.

Example: Choose the four-digit number $N = 5213$, and apply the *operation*. Then,

$$N_1 = 5321 - 1235 = 4086$$
$$N_2 = 8640 - 0468 = 8172$$
$$N_3 = 8721 - 1278 = 7443$$
$$N_4 = 7443 - 3447 = 3996$$
$$N_5 = 9963 - 3699 = 6264$$
$$N_6 = 6642 - 2466 = 4716$$
$$N_7 = 7641 - 1467 = \underline{\underline{6174}}$$

Theorem: Kaprekar's "Game of 6174":

Step 1: Choose any four-digit number $N = \underline{a} \underline{b} \underline{c} \underline{d}$ you wish, with at least one digit different from the others, but allow leading zero four-digit numbers such as $N = \underline{0} \underline{b} \underline{c} \underline{d}$, $N = \underline{0} \underline{0} \underline{c} \underline{d}$, or even $N = \underline{0} \underline{0} \underline{0} \underline{d}$ in your selection.

Step 2: Arrange your selected four-digit number in ascending order first and then in descending order to obtain (most likely) two other four-digit numbers.

Step 3: Subtract the smaller of the four-digit number you obtained in Step 2 from greater one, and call the new four-digit number obtained $N_1 = \underline{A} \underline{B} \underline{C} \underline{D}$.

Step 4: Repeat the combined *operation* of **Steps 2&3** for the four-digit number $N_1 = \underline{A} \underline{B} \underline{C} \underline{D}$ to obtain a next new four-digit number $N_2 = \underline{E} \underline{F} \underline{G} \underline{H}$ and then N_3 ,

Then, performing the *operation* consisting of **Steps 2&3** on your selected number no more than seven times, the resulting number of your last operation will be the four-digit number **6174**!

Proof (Astaneh): I will present the proof for the only two possible cases that I will label as **Case I** and **Case II**. The proof of **Case I** is short, whereas the proof for **Case II** will be much longer, and a bit tedious, as we need to bring in a second parameter in the argument (compared to the proof of the "Game of 495" in the previous Article 9), followed by a new kind of treatment.

So, let us first distinguish the two possible cases of a selection of a four-digit number; and prove them one by one.

Case I: After arranging the digits of your randomly selected four-digit number in ascending order, the resulting four-digit turns out to $N = \underline{a} \underline{b} \underline{b} \underline{d}$, with $a \leq b < d$ or $a \leq b < d$.

Case II: After arranging the digits of your randomly selected four-digit number in ascending order, the resulting four-digit number turns out to be $N = \underline{a} \underline{b} \underline{c} \underline{d}$, with $a \leq b < c \leq b < d$.

Proof of case I: Assume after you arrange the digits of your randomly selected number it turns out to be $N = \underline{a} \underline{b} \underline{b} \underline{d}$, with $a \leq b < d$ or $a \leq b < d$. Because of complete similarity of the proofs, I will assume $a \leq b < d$. Let $e = d - a$, then e can be any number $e = 1, 2, \dots, 9$. And therefore, by Step 3 of the rules of the game after the first *operation*, the new four-digit number N_1 will eventually be,

$$N_1 = \underline{d} \underline{b} \underline{b} \underline{a} - \underline{a} \underline{b} \underline{b} \underline{d} = (1000d + 100b + 10b + a) - (1000a + 100b + 10b + d) = 1000(d - a) + (a - d) - 1000e - e. \text{ Hence, } N_1 = 999e, \text{ where } e = 1, 2, \dots, 9.$$

Therefore N_1 can be only one of the following nine numbers,

999, 1998, 2997, 3996, 4995, 5994, 6993, 7992, 8991.

For convenience, I will examine all these number, but in the following order,

- (i) $N_1 = 1998$ or 8991 . Since both these four-digit numbers have the same digits, by Step 2 of the rules for either case, $N_2 = 9981 - 1899 = 8082$, $N_3 = 8820 - 288 = 8532$, and $N_4 = \underline{6174}$.
- (ii) $N_1 = 2997$ or 7992 . Again these numbers have the same digits, so in either case $N_2 = 9972 - 2799 = 7173$, $N_3 = 7731 - 1377 = 6354$, $N_4 = 6543 - 3456 = 3087$, $N_5 = 8730 - 378 = 8352$, and $N_6 = \underline{6174}$.
- (iii) $N_1 = 3996$ or 6993 . Again these numbers have the same digits, so $N_2 = 9963 - 3699 = 6264$, $N_3 = 6642 - 2466 = 4176$. Since this number has the same as the target number $\underline{6174}$, and the target number is the fixed number of the *operation* of the game it follows $N_4 = \underline{6174}$.
- (iv) $N_1 = 999$. Then $N_2 = 9990 - 999 = 8991$. Since this latter number is one of the options for N_1 in case (i), it follows that $N_5 = \underline{6174}$.

This completes the proof of **Case I**.

Proof of Case II: The selected four digit number after arranging in ascending order will be of the form $N = \underline{a} \underline{b} \underline{c} \underline{d}$, where $a \leq b < c \leq d$. Let $e = d - a$ and $f = c - b$, then by Step 3 of the rules, after the first operation the new four-digit number N_1 can be expressed as,

$$\begin{aligned}
 N_1 &= \underline{d} \underline{c} \underline{b} \underline{a} - \underline{a} \underline{b} \underline{c} \underline{d} = (1000d + 100c + 10b + a) - (1000a + 100b + 10c + d) = \\
 &= 1000(d - a) + 100(c - b) + 10(b - c) + (a - d) = \\
 &= 1000(d - a) + 100(c - b - 1) + 10(10 + b - c) + (a - d) = \\
 &= 1000(d - a) + 100(c - b - 1) + 10(9 + b - c) + (10 + a - d) = \\
 &= 1000e + 100(f - 1) + 10(9 - f) + (10 - e). \text{ Hence,}
 \end{aligned}$$

$$N_1 = \underline{e} \underline{(f - 1)} \underline{(9 - f)} \underline{(10 - e)}, \text{ where } 1 \leq f \leq e \leq 9. \quad (2)$$

Now we distinguish nine possible cases as follows,

$$e = f, f + 1, f + 2, f + 3, f + 4, f + 5, f + 6, f + 7, f + 8.$$

The rest of the proof would be to let e assume all above nine cases one by one, but the proof will be shorter if we cover the all those cases backwards, so here we go,

(A) $e = f + 8$. Then (2) implies $N_1 = (f + 8)(f - 1)(9 - f)(2 - f)$. Now since $f + 8$ is a digit between 1 and 9 (inclusive), $f \leq 1$ which means we can only have $f = 1$, in which case, $N_1 = 9081$.

Then $N_2 = 9810 - 189 = 9621$, $N_3 = 9621 - 1269 = 8352$, and $N_4 = 6174$.

(B) $e = f + 7$. Then (2) implies $N_1 = (f + 7)(f - 1)(9 - f)(3 - f)$. Again since $f + 7$ is a digit between 1 and 9, we can only have $f = 1, 2$.

(i) If $f = 1$, then $N_1 = 8082$. Then $N_2 = 8820 - 288 = 8532$, and $N_3 = 6174$.

(ii) If $f = 2$, then $N_1 = 9171$. Then $N_2 = 9711 - 1179 = 8532$. Since this number has the same digits as N_1 in the previous part (A) above, it follows that $N_3 = 6174$.

(C) $e = f + 6$. Then (2) implies $N_1 = (f + 6)(f - 1)(9 - f)(4 - f)$.

Since $f + 6$ is a digit and $1 \leq f$ we can only have $f = 1, 2, 3$.

(i) If $f = 1$, then $N_1 = 7083$, $N_2 = 8730 - 378 = 8352$. Since this four-digit number is the same as N_2 in part (B)/(ii) above, we conclude that $N_3 = 6174$.

(ii) If $f = 2$, then $N_1 = 8172$, $N_2 = 8721 - 1278 = 7443$, $N_3 = 7443 - 3447 = 3996$, $N_4 = 9963 - 3699 = 6264$. Since this four-digit number is the same as N_2 in Case I/(ii), we conclude that $N_6 = 6174$.

(iii) If $f = 3$, then $N_1 = 9261$. Since this number has the same digits as N_2 in case (A) above, it follows that $N_3 = 6174$.

(D) $e = f + 5$. Then (2) implies $N_1 = (f + 5)(f - 1)(9 - f)(5 - f)$.

Since $f + 5$ is a digit and $1 \leq f$ we can only have $f = 1, 2, 3, 4$.

(i) If $f = 1$, then $N_1 = 6084$, $N_2 = 8640 - 468 = 8172$. Since this four-digit number is the same as N_1 in above case (C)/(ii), we conclude $N_7 = 6174$.

(ii) If $f = 2$, then $N_1 = 7173$. Since this four-digit number is the same as N_2 in the Case I/(ii), it follows that $N_5 = 6174$.

(iii) If $f = 3$, then $N_1 = 8262$, $N_2 = 8622 - 2268 = 6354$. Since this four-digit number is the same as N_3 in Case I/(ii), it follows that $N_5 = 6174$.

(v) If $f = 4$, then $N_1 = 9351$, $N_2 = 9531 - 1359 = 8172$. Since this four-digit number is the same as N_1 in the case (C)/(ii), it follows that $N_7 = \underline{6174}$.

(E) $e = f + 4$. Then (2) implies $N_1 = (f + 4) (f - 1) (9 - f) (6 - f)$. Since $f + 4$ is a digit and $1 \leq f \leq 6$ we can only have $f = 1, 2, 3, 4, 5$.

(i) If $f = 1$, then $N_1 = 5085$, $N_2 = 8550 - 558 = 7992$. Since this number is the same as N_1 in Case I / (ii), it follows that $N_7 = \underline{6174}$.

(ii) If $f = 2$, then $N_1 = \underline{6174}$.

(iii) If $f = 3$, then $N_1 = 7263$, $N_2 = 7632 - 2367 = 5265$, $N_3 = 6552 - 2556 = 3996$. Since this four-digit number is also N_3 in case (C)/(ii), it follows that that $N_6 = \underline{6174}$.

(iv) If $f = 4$, then $N_1 = 8352$. Since this number is the same as N_2 in case (C)/(i), it follows that that $N_2 = \underline{6174}$.

(v) If $f = 5$, then $N_1 = 9441$, $N_2 = 9441 - 1449 = 7992$. Since this number is the same as N_2 in case (E)/(i), it follows that $N_7 = \underline{6174}$.

(F) $e = f + 3$. Then (2) implies $N_1 = (f + 3) (f - 1) (9 - f) (7 - f)$. Since $f + 3$ is a digit and $1 \leq f \leq 6$ we can only have $f = 1, 2, 3, 4, 5, 6$.

(i) If $f = 1$, then $N_1 = 4086$, $N_2 = 8640 - 468 = 8172$. Since this four-digit number is the same a N_1 in case (C)/(ii), it follows that that $N_7 = \underline{6174}$.

(ii) $f = 2$, then $N_1 = 5175$, $N_2 = 7551 - 1557 = 5994$, $N_3 = 9954 - 4599 = 5355$, $N_4 = 5553 - 3555 = 1998$. Since this number is the same as N_1 in Case I / (i), it follows that $N_7 = \underline{6174}$.

(iii) If $f = 3$, then $N_1 = 6264$. Since this number is the same as N_2 in Case I / (iii), it follows that $N_3 = \underline{6174}$.

(iv) If $f = 4$, then $N_1 = 7353$, $N_2 = 7533 - 3357 = 4176$. Since this four-digit number has the same digits as the fixed number **6174** of the *operation* of the game, it follows that $N_3 = \underline{6174}$.

(v) If $f = 5$, then $N_1 = 8442$, $N_2 = 8442 - 2448 = 5994$. Since this number has the same digit as N_2 in case (ii) above, it follows that $N_6 = \underline{6174}$.

(vi) If $f = 6$, then $N_1 = 9531$. Since this has the same digits as N_1 in the case (D) / (v), it follows that $N_7 = \underline{6174}$.

(G) $e = f + 2$. Then (2) implies $N_1 = (f + 2) (f - 1) (9 - f) (8 - f)$.

Since $f + 2$ is a digit and $1 \leq f$ we can only have $f = 1, 2, 3, 4, 5, 6, 7$.

(i) If $f = 1$, then $N_1 = 3087$. Since this four-digit number is the same as N_4 in Case I / (ii), it follows that $N_3 = \underline{6174}$.

(ii) If $f = 2$, then $N_1 = 4176$. Again, since this four-digit number has the same digits as **6174**, the fixed number of *operation* of the game, it follows that $N_2 = \underline{6174}$.

(iii) If $f = 3$, then $N_1 = 5265$. Since this number is the same as N_2 in case (E) / (iii), it follows that $N_5 = \underline{6174}$.

(iv) If $f = 4$, then $N_1 = 6354$, and since this number is the same as N_2 in the case (D) / (iii), it follows that $N_5 = \underline{6174}$.

(v) If $f = 5$, then $N_1 = 7443$. Since this number is the same as N_2 in the case (C) / (ii), it follows that $N_4 = \underline{6174}$.

(vi) If $f = 6$, then $N_1 = 8532$, and since this number has the same digits as N_1 in the case (E) / (iv), it follows that $N_2 = \underline{6174}$.

(vii) If $f = 7$, then $N_1 = 9621$. Since this number is the same as N_2 in the case (A) at the start, it follows that $N_4 = \underline{6174}$.

(H) $e = f + 1$. Then (2) implies $N_1 = (f + 1) (f - 1) (9 - f) (9 - f)$.

Since $f + 1$ is a digit and $1 \leq f$ we can only have $f = 1, 2, \dots, 8$.

(i) If $f = 1$, then $N_1 = 2088$. Since this four-digit number has the same digits as N_2 in case Case I / (i), it follows that $N_3 = 6174$.

(ii) If $f = 2$, then $N_1 = 3177$. Since this number has the same digits as N_1 in the case (D) (ii), it follows that $N_5 = 6174$.

(iii) If $f = 3$, then $N_1 = 4266$. Since this number has the same digits as N_2 in Case I / (iii), it follows that $N_3 = 6174$.

(iv) If $f = 4$, then $N_1 = 5355$. Since this number is the same as N_3 in the case (F) (ii), it follows that $N_5 = 6174$.

Case I / (iv), it follows that $N_4 = 6174$.

(v) If $f = 5$, then $N_1 = 6444$, $N_2 = 6444 - 4446 = 1998$. Since this number is the same as N_1 in Case I / (i), it follows that $N_5 = 6174$.

(vi) If $f = 6$, then $N_1 = 7533$. Since this number has the same digits as N_1 in the case (F) (iv), it follows that $N_2 = 6174$.

(vii) If $f = 7$, then $N_1 = 8622$. Since this number has the same digits as N_1 in the case (D) (iii), it follows that $N_5 = 6174$.

(viii) If $f = 8$, then $N_1 = 9711$, $N_2 = 9711 - 1179 = 8532$. Since this number is the same as N_1 in the case (G) (vi), it follows that $N_3 = 6174$.

(K) $e = f$. Then (2) implies $N_1 = f(f-1)(9-f)(10-f)$.

Since f is a digit and $1 \leq f \leq 9$ we can have $f = 1, 2, \dots, 9$.

(i) If $f = 1$, then $N_1 = 1089$. Since this number has the same digits as N_1 in case (A), it follows that $N_4 = 6174$.

(ii) If $f = 2$, then $N_1 = 2178$. Since this number has the same digits as N_1 in the case (C) (ii), it follows that $N_6 = 6174$.

(iii) If $f = 3$, then $N_1 = 3267$. Since this number has the same digits as N_1 in

the case (E) /(iii), it follows that $N_6 = \underline{6174}$.

(iv) If $f = 4$, then $N_1 = \underline{4356}$. Since this number has the same digits as N_1 in the case (G) /(iv), it follows that $N_5 = \underline{6174}$.

(v) If $f = 5$, then $N_1 = \underline{5445}$, $N_2 = \underline{5544} - \underline{4455} = \underline{1089}$. Since this number is the same as N_1 in case (i) above, it follows that $N_5 = \underline{6174}$.

(vi) If $f = 6$, then $N_1 = \underline{6534}$. Since this number has the same digits as N_1 in case (iv) above, it follows that $N_5 = \underline{6174}$.

(vii) If $f = 7$, then $N_1 = \underline{7623}$. Since this number has the same digits as N_1 in the case (E) /(iii) , it follows that $N_6 = \underline{6174}$.

(viii) If $f = 8$, then $N_1 = \underline{8712}$. Since this number has the same digits as N_2 in the case (D) /(i) , it follows that $N_6 = \underline{6174}$.

(ix) If $f = 9$, then $N_1 = \underline{9801}$. Since this number has the same digits as N_2 in the case (v) above, it follows that $N_4 = \underline{6174}$.

Since we have covered all possible cases $e = f, f + 1, f + 2, f + 3, f + 4, f + 5, f + 6, f + 7, f + 8$, the proof of **Case II** is also complete.