n Times Differentiable Interpolating Curves and the Pascal Triangle

Ali Astaneh, Ph.D(Lon), Vancouver BC

Let us first consider the point of view that the function defined by
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fx) = cos (x + 1)+ 0<x<1
1 x=>1
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is an entirely differentiable function over the real number line, in the sense of having a graph
with no corner/sharp points. However, as it can easily it can be observer its derivative

0 x<0
Vs

f'(x) = —Esin m(x+ 1) 0<x<1
0 x=1

isn’t differentiable neither at x = 0, nor at x = 1. This means f"'(x) isn’t define at numbers
= 0,1, which means the graph of f"'(x) defined as,

0 x<0

2

n T
f'(x) = —7cosn(x+1) 0<x<1
0 x>1

isn’t defined at x = 0,1 and with two jumps at those two numbers.

The question then arises whether there are interpolation curves between half lines defined by
y=0, x<0,andy =1, x =1, that are two, three, four, ..., or even n times (entirely)
differentiable for an arbitrary n = 2,3,4, ... . As my following proposition will show shortly the
answer to this question is affirmative, and a polynomial function of order 2n + 1 will be the
desired n times differentiable interpolation. And what is more, and perhaps even striking, is that
the popular Pascal Triangle can be used to derive an algorithm to define those n times
differentiable functions of degree 2n + 1 interpolating between the two horizontal half lines
y=0, x<0,andy =1, x> 1.And here is the Proposition.

Proposition: For any positive integer n, the piece-wise function



0 x<0
n i
f,00)=4x"" > (1) ,,,C, (x-1)!  0<x<1,
j=0
1 1<x

is an entirely n times differentiable function interpolating the horizontal half linesy =0, x <0,
andy =1, x >1,where ,C, means combinations of n+ jobject taken jata time .

Proof: It is obvious that for each n the function £, (x) is an entirely continuous at the two points
(0,0) and (1,1), and hence entirely. The proof that f,,(x) is n times differentiable at the two
points (0,0) and (1,1) is accomplished by induction on n (a kind of similar to the proof of the
article “General Product Rule” presented in Calculus 2 section of this website. I leave the proof
an exercise to the enthusiastic reader. I might point out in the process a familiarity about
identities among combinations  ;C; for different positive integers n + j and j’s is required

and change if indices in sigmas is required.

Connection with the Pascal Traiangle: As the reader can check from the underlined entries of
the Pascal Triangle below, the coefficients in each sigma Z’}:O(—l)f 0 Cj (x — 1)/ in the

definition of the n times differentiable function £, (x) in the above Proposition are just the first
n + 1 entries in (downward to the right) of the (n + 1) diagonal of the triangle, but alternated
in the sign (Note that the usual convention | ;C; =0 when j =0 is applied here). For example,

the coefficients in the sigma defining f;(x) are 1 and — 2 , the coefficients in the sigma
defining £, (x) are 1 and —3 and 6, and the coefficients in the sigma defining f5(x) are 1 and —4
and 10 and —20, as | have underlined them in the Pascal Triangle below show.
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As examples how the graphs of the first four functions for f; (x), f,(x), f53(x) and f,(x) look
like I have graph them below. Note that in each example the sigma in the proposition has been
simplified after the necessary expansions.

Example 1 By the above Proposition f; (x) amounts to,

0 x<0
fi(x) = §x%[1 = 2(x — 1)] 0<x<1
1 x=>1

> fl:=x —>piecewise(x <0,0,x < l,xz.(3 —2x),x <3, 1);
> plot(fl(x),x=-1.2.5);
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Note that, as expected, the derivative f; (x) is entirely continuous because

1
P 1-2x-1n)=-6x-1x
dx’ !

Example 2 The Proposition determines £, (x) as,

0 x<0
fo(x) =4{x3[1 —=3(x— 1) + 6(x — 1)?] 0<x<l1
1 x=>1

> f2:=x —>piecewise(x <0,0,x < 1,x3.(6x2 —15x+ 10),x <3, 1);
> plot(f2(x),x=-1.2.5);
1
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Note that the derivative f,'(x) is entirely continuous because

d*
xz[xg (1-3(x-1+6x-17°))=60x(2x" -3 x+1}
b

Example 3 The Proposition implies f5(x) is,

0 x<0
f3(x) ={x*[1 —4(x - 1) +10(x — 1) —20(x —1)*] 0<x<1
1 x=>1

> f3:=x —>piecewise(x <0,0,x < l,x4.( -20%° + 70 — 84 x + 35),x <3, l);
> plot(f3(x),x=-1.2.5);

Note that the derivative f3(3)(x) is entirely continuous because

d’
3

(P (1-4x-1)+10(x-1° -20(x- 1)) = -840 x (5" - 10x" +6x - 1
dx

Example 4: Whenn = 4, the Proposition implies f,(x) as follows,

0 x<0
falx) = x5(70x4‘ —315x3 + 540x% — 420x +126) 0<x<1
1 x=>1

> 4 :=x — piecewise(x < 0,0,x < 1,x.(70x* —315x> 4+ 540" — 420x + 126),x <3, 1);
> plot(f4(x),x=-1.2.5);




Note that, as expected, the derivative f4(4) (x) is entirely continuous because

a*

d JC4

15120 x (14 x* - 35" +30x" - 10x + 1}

(°(1-50c-1)+150-17 -35 - 1) + 70 (x - 1)*)) =

Observe, say from the last two Examples, that the higher order differentiability of f,(x)

(compared to graph of f5(x) ) is reflected by the fact that that graph of f,(x) looks “flatter” to
the right vicinity of x =0, and the left vicinity of x =1.

Remark: To verify that the derivatives f5(5) (x), f3(6) (x) , and the derivative f7(7) (x) will also
be entirely continuous, it is enough to consider that

d’

[ (1-60-1+21 -1 -56(c- 17 +126 (x - * - 252 (x - 1)°)| =
dx

~332640 x (42x° - 126 x" +140x° - 70x° +15x - 1]

&

d” oo

— [ (1-7x -1+ 28 -1 -
dx

84ix-1P +210ix-1)* —462(x - 1)" + 924 (x — 1}'5” -
85486401’[1323(6—4!523(5 +630xT —420x7 £+ 140x° 21 x + 1)

-

o

(x*(1-8r-1+36(x-17 -120x- 1) +
o

o

330 - 1* - 792 (x - 1)° + 1716 (x - 1)® - 3432 (x - 1)) =
259459200 x (429 x” - 1716 x° + 2772 x° - 2310 x* + 1050 x° - 252x% +28.x - 1)

And finally, I leave it to the interested reader to use function transformations to conclude the
following Theorem, as a generalization of the above Proposition.

Theorem: For any positive integer n, the function

b x<a
d(x —_ a)n+1

Fa0) = gy [1+;<—1)fnﬂc,-(x—c)f] a<x<c

d X=cC

defines an entirely N times differentiable interpolation from the right end of the
half horizontal line interpolating the half linesy =0, x<0,andy =1, x> 1.



