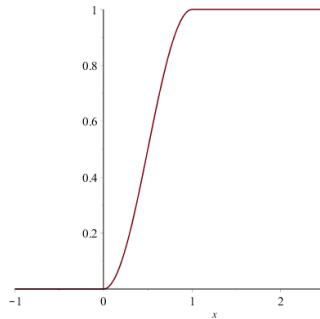


n Times Differentiable Interpolating Curves and the Pascal Triangle

Ali Astaneh, Ph.D(Lon), Vancouver BC

Let us first consider the point of view that the function defined by

$$f(x) = \begin{cases} 0 & x \leq 0 \\ \frac{1}{2} \cos \pi(x+1) + \frac{1}{2} & 0 < x < 1 \\ 1 & x \geq 1 \end{cases}$$



is an entirely differentiable function over the real number line, in the sense of having a graph with no corner/sharp points. However, as it can easily be observed its derivative

$$f'(x) = \begin{cases} 0 & x \leq 0 \\ -\frac{\pi}{2} \sin \pi(x+1) & 0 < x < 1 \\ 0 & x \geq 1 \end{cases}$$

isn't differentiable neither at $x = 0$, nor at $x = 1$. This means $f''(x)$ isn't defined at numbers $= 0, 1$, which means the graph of $f''(x)$ defined as,

$$f''(x) = \begin{cases} 0 & x < 0 \\ -\frac{\pi^2}{2} \cos \pi(x+1) & 0 < x < 1 \\ 0 & x > 1 \end{cases}$$

isn't defined at $x = 0, 1$ and with two jumps at those two numbers.

The question then arises whether there are interpolation curves between half lines defined by $y = 0$, $x \leq 0$, and $y = 1$, $x \geq 1$, that are two, three, four, ..., or even n times (entirely) differentiable for an arbitrary $n = 2, 3, 4, \dots$. As my following proposition will show shortly the answer to this question is affirmative, and a polynomial function of order $2n + 1$ will be the desired n times differentiable interpolation. And what is more, and perhaps even striking, is that the popular Pascal Triangle can be used to derive an algorithm to define those n times differentiable functions of degree $2n + 1$ interpolating between the two horizontal half lines $y = 0$, $x \leq 0$, and $y = 1$, $x \geq 1$. And here is the Proposition.

Proposition: For any positive integer n , the piece-wise function

$$f_n(x) = \begin{cases} 0 & x \leq 0 \\ x^{n+1} \cdot \sum_{j=0}^n (-1)^j {}_{n+j} C_j (x-1)^j & 0 < x < 1, \\ 1 & 1 \leq x \end{cases}$$

is an entirely n times differentiable function interpolating the horizontal half lines $y = 0$, $x \leq 0$, and $y = 1$, $x \geq 1$, where ${}_{n+j} C_j$ means combinations of $n + j$ object taken j at a time.

Proof: It is obvious that for each n the function $f_n(x)$ is an entirely continuous at the two points $(0,0)$ and $(1,1)$, and hence entirely. The proof that $f_n(x)$ is n times differentiable at the two points $(0,0)$ and $(1,1)$ is accomplished by induction on n (a kind of similar to the proof of the article “General Product Rule” presented in Calculus 2 section of this website. I leave the proof an exercise to the enthusiastic reader. I might point out in the process a familiarity about identities among combinations ${}_{n+j} C_j$ for different positive integers $n + j$ and j ’s is required, and change if indices in sigmas is required.

Connection with the Pascal Traiangle: As the reader can check from the underlined entries of the Pascal Triangle below, the coefficients in each sigma $\sum_{j=0}^n (-1)^j {}_{n+j} C_j (x - 1)^j$ in the definition of the n times differentiable function $f_n(x)$ in the above Proposition are just the first $n + 1$ entries in (downward to the right) of the $(n + 1)^{th}$ diagonal of the triangle, but alternated in the sign (Note that the usual convention ${}_{n+j} C_j = 0$ when $j = 0$ is applied here). For example, the coefficients in the sigma defining $f_1(x)$ are 1 and -2 , the coefficients in the sigma defining $f_2(x)$ are 1 and -3 and 6, and the coefficients in the sigma defining $f_3(x)$ are 1 and -4 and 10 and -20 , as I have underlined them in the Pascal Triangle below show.

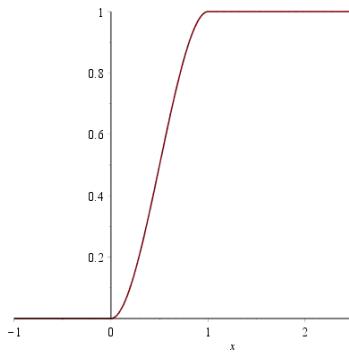
$$\begin{array}{ccccccc}
 & & & 1 & & & \\
 & & & \underline{1} & 1 & & \\
 & & & 1 & \underline{2} & 1 & \\
 & & & \underline{1} & 3 & 3 & 1 \\
 & & & 1 & 4 & \underline{6} & 4 & 1 \\
 & & & 1 & 5 & \underline{10} & 10 & 5 & 1 \\
 & & & 1 & 6 & \underline{15} & \underline{20} & 15 & 6 & 1 \\
 & & & 1 & 7 & 21 & \underline{35} & 35 & 21 & 7 & 1 \\
 & & & 1 & 8 & 28 & 56 & \underline{70} & 56 & 28 & 8 & 1
 \end{array}$$

As examples how the graphs of the first four functions for $f_1(x)$, $f_2(x)$, $f_3(x)$ and $f_4(x)$ look like I have graph them below. Note that in each example the sigma in the proposition has been simplified after the necessary expansions.

Example 1 By the above Proposition $f_1(x)$ amounts to,

$$f_1(x) = \begin{cases} 0 & x \leq 0 \\ x^2[1 - 2(x - 1)] & 0 < x < 1 \\ 1 & x \geq 1 \end{cases}$$

> $f1 := x \rightarrow \text{piecewise}(x < 0, 0, x < 1, x^2 \cdot (3 - 2x), x < 3, 1);$
 > $\text{plot}(f1(x), x = -1 .. 2.5);$



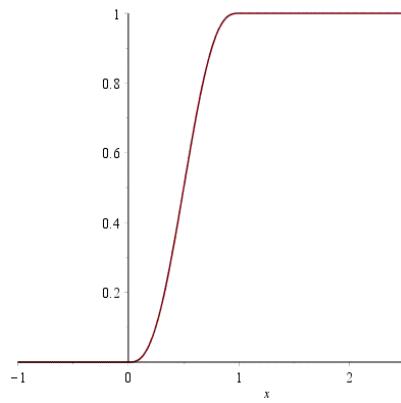
Note that, as expected, the derivative $f'_1(x)$ is entirely continuous because

$$\frac{d}{dx}(x^2(1 - 2(x - 1))) = -6(x - 1)x$$

Example 2 The Proposition determines $f_2(x)$ as,

$$f_2(x) = \begin{cases} 0 & x \leq 0 \\ x^3[1 - 3(x - 1) + 6(x - 1)^2] & 0 < x < 1 \\ 1 & x \geq 1 \end{cases}$$

> $f2 := x \rightarrow \text{piecewise}(x < 0, 0, x < 1, x^3 \cdot (6x^2 - 15x + 10), x < 3, 1);$
 > $\text{plot}(f2(x), x = -1 .. 2.5);$



Note that the derivative $f_2''(x)$ is entirely continuous because

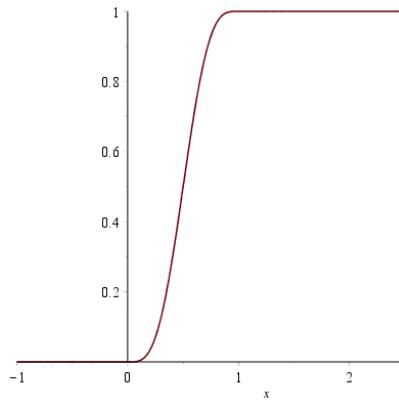
$$\frac{d^2}{dx^2} (x^3 (1 - 3(x - 1) + 6(x - 1)^2)) = 60x(2x^2 - 3x + 1)$$

Example 3 The Proposition implies $f_3(x)$ is,

$$f_3(x) = \begin{cases} 0 & x \leq 0 \\ x^4[1 - 4(x - 1) + 10(x - 1)^2 - 20(x - 1)^3] & 0 < x < 1 \\ 1 & x \geq 1 \end{cases}$$

> $f3 := x \rightarrow \text{piecewise}(x < 0, 0, x < 1, x^4(-20x^3 + 70x^2 - 84x + 35), x < 3, 1);$

> $\text{plot}(f3(x), x = -1 .. 2.5);$



Note that the derivative $f_3^{(3)}(x)$ is entirely continuous because

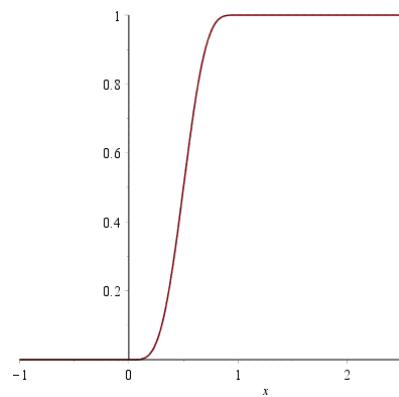
$$\frac{d^3}{dx^3} (x^4 (1 - 4(x - 1) + 10(x - 1)^2 - 20(x - 1)^3)) = -840x(5x^3 - 10x^2 + 6x - 1)$$

Example 4: When $n = 4$, the Proposition implies $f_4(x)$ as follows,

$$f_4(x) = \begin{cases} 0 & x \leq 0 \\ x^5(70x^4 - 315x^3 + 540x^2 - 420x + 126) & 0 < x < 1 \\ 1 & x \geq 1 \end{cases}$$

> $f4 := x \rightarrow \text{piecewise}(x < 0, 0, x < 1, x^5(70x^4 - 315x^3 + 540x^2 - 420x + 126), x < 3, 1);$

> $\text{plot}(f4(x), x = -1 .. 2.5);$



Note that, as expected, the derivative $f_4^{(4)}(x)$ is entirely continuous because

$$\begin{aligned} \frac{d^4}{dx^4} & \left(x^5 (1 - 5(x-1) + 15(x-1)^2 - 35(x-1)^3 + 70(x-1)^4) \right) = \\ & 15120x(14x^4 - 35x^3 + 30x^2 - 10x + 1) \end{aligned}$$

Observe, say from the last two Examples, that the higher order differentiability of $f_4(x)$ (compared to graph of $f_3(x)$) is reflected by the fact that that graph of $f_4(x)$ looks “flatter” to the right vicinity of $x = 0$, and the left vicinity of $x = 1$.

Remark: To verify that the derivatives $f_5^{(5)}(x)$, $f_3^{(6)}(x)$, and the derivative $f_7^{(7)}(x)$ will also be entirely continuous, it is enough to consider that

$$\begin{aligned} \frac{d^5}{dx^5} & \left(x^6 (1 - 6(x-1) + 21(x-1)^2 - 56(x-1)^3 + 126(x-1)^4 - 252(x-1)^5) \right) = \\ & -332640x(42x^5 - 126x^4 + 140x^3 - 70x^2 + 15x - 1) \end{aligned}$$

$$\begin{aligned} \frac{d^6}{dx^6} & \left(x^7 (1 - 7(x-1) + 28(x-1)^2 - \right. \\ & \left. 84(x-1)^3 + 210(x-1)^4 - 462(x-1)^5 + 924(x-1)^6) \right) = \\ & 8648640x(132x^6 - 462x^5 + 630x^4 - 420x^3 + 140x^2 - 21x + 1) \end{aligned}$$

$$\begin{aligned} \frac{d^7}{dx^7} & \left(x^8 (1 - 8(x-1) + 36(x-1)^2 - 120(x-1)^3 + \right. \\ & \left. 330(x-1)^4 - 792(x-1)^5 + 1716(x-1)^6 - 3432(x-1)^7) \right) = \\ & -259459200x(429x^7 - 1716x^6 + 2772x^5 - 2310x^4 + 1050x^3 - 252x^2 + 28x - 1) \end{aligned}$$

And finally, I leave it to the interested reader to use function transformations to conclude the following Theorem, as a generalization of the above Proposition.

Theorem: For any positive integer n , the function

$$f_n(x) = \begin{cases} \frac{b}{d(x-a)^{n+1}} [1 + \sum_{j=1}^n (-1)^j {}_{n+j} C_j (x-c)^j] & x \leq a \\ d & a < x < c \\ \frac{c}{d} & x \geq c \end{cases}$$

defines an entirely n times differentiable interpolation from the right end of the half horizontal line interpolating the half lines $y = 0$, $x \leq 0$, and $y = 1$, $x \geq 1$.